
The Kvaser t Programming Language

Copyright 2011-2021 Kvaser AB, Mölndal, Sweden
https://www.kvaser.com

Printed Sunday 14th November, 2021

We believe that the information contained herein was accurate in all respects at the time of printing.
Kvaser AB cannot, however, assume any responsibility for errors or omissions in this text. Also note
that the information in this document is subject to change without notice and should not be construed
as a commitment by Kvaser AB.

The Kvaser t Programming Language 2 (92)

(This page is intentionally left blank.)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 3 (92)

Contents

1 t Programming 5
1.1 Overview . 5
1.2 Introduction to the t Language for CAN 8
1.3 Elements of a t Program . 10
1.4 Device dependent functionality . 13

2 t Language Reference 14
2.1 Types . 14
2.2 Variables and constants . 17
2.3 Serialization and Deserialization . 20
2.4 Environment Variables . 20
2.5 Functions . 21
2.6 Control Flow Statements . 24
2.7 Expressions . 27
2.8 Blocks . 29
2.9 Comments . 29
2.10 Hooks . 29
2.11 Using CAN Databases . 41
2.12 #include . 41
2.13 #error . 42
2.14 #warning . 42
2.15 Conditional Compilation . 42
2.16 Predefined Output Functions . 44
2.17 Predefined File I/O Functions . 45
2.18 Predefined XML Functions . 47
2.19 Predefined Math Functions . 49
2.20 Predefined String Functions . 53
2.21 Predefined CAN Related Functions 56
2.22 Predefined Timer Related Functions 63
2.23 Predefined Environment Variable Functions 65
2.24 Predefined CAN Transport Protocol Related Functions 66
2.25 Predefined t Program Related Functions 69
2.26 Predefined Logger Related Functions 70
2.27 Predefined Crypto Related Functions 72
2.28 Predefined System Related Functions 73
2.29 Predefined Customer Data Related Functions 73
2.30 Predefined LED Functions . 74
2.31 Predefined I/O Functions . 75
2.32 Other Predefined Functions . 79
2.33 Predefined Symbols . 80
2.34 Predefined Types . 80
2.35 Predefined Constants . 84

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 4 (92)

3 Document Revision History 92

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 5 (92)

1 t Programming

1.1 Overview

The Kvaser t programming language is event oriented and modeled after C. It can
be used to customize the behavior of Kvaser Memorator Pro 2xHS v2 and other
Kvaser t capable devices.

A t program is invoked via hooks, which are entry points that are executed at the
occurrence of certain events. These events can be, for example, the arrival of
specific CAN messages, timer expiration, or external input.

The addition of t programs running directly on a Kvaser Device makes it possible
to react much quicker to CAN bus events (for example to speed up file transfer
protocols or to simulate missing hardware). Some Kvaser devices can also operate
completely autonomously, e.g. Kvaser Memorator Pro 2xHS v2.

In this document, “Kvaser t”, “t”, “the t language”, and “the t programming
language” are used as synonyms for the language. A piece of software written
using it is a t program or possibly a t script. No difference in meaning is intended
between, for example, “a Kvaser t program” and “a t script”.

Kvaser t device

t program

Computer

User application

Kvaser CANlibUSB

CAN

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 6 (92)

1.1.1 Creating a t Program

First of all, decide what you want to happen in your program. Do you want to
receive a message, send a message, or a combination of both?

You must decide what will trigger an action in your code. You can trigger on
execution start/stop, on a key press, on a timer, or on reception of a message.

If you want to receive CAN messages, use the on CanMessage construct. After
receiving a message, you may print to a log file, send a message, update a
counter, etc.

If you want to send messages, decide how the transmission will be triggered. As
mentioned above, there are different ways of triggering in the system.

Use your favorite text editor to create the t program.

If you are familiar with C programming this will all be straightforward!

1.1.2 Using a t Program

When you have written your t program, you need to compile the file using the
supplied command line compiler. Any syntactic or semantic errors in the file are
diagnosed by the compiler and must be corrected before the compiler will produce
a binary format file as output.

This is an example of how to use the t language compiler:

> scc . exe test . t

The command will produce a binary output file named test.txe that can then be
loaded and executed. Running long program segments may adversely affect the
general system operation. Do not write code that loops "forever"!

1.1.3 Version of t compiler

The compiler version number consists of three parts: MAJOR.MINOR.BUILD.
Updates in the MAJOR part indicates significant changes that needs support from
new firmware. This also means that older scripts may need to be recompiled
before they can be executed on a newer firmware. See the release notes for
information about which compiler versions a specific firmware supports.

The current version of the compiler is printed when invoked without any arguments.

As of this writing, the latest version of the t compiler is version 3.12.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 7 (92)

1.1.3.1 Running via CANlib

To test the program, you must download the compiled binary file to your Kvaser
Device via CANlib. You can also download data files via CANlib. CANlib provides
functions for starting and stopping the t program. There are also functions for
communicating with the t program. The following example uses the Kvaser t utility
(a program that wraps CANlib’s t related functions) to download and start the
compiled t program:

> t u t i l . exe −channel=0 −slot =0 −load test . txe −s ta r t

Or, if the t program is stored on the SD card, this command starts the program:

> t u t i l . exe −channel=0 −slot =0 −loadlocal test . txe −s ta r t

For help on how to use the Kvaser t utility, use the following command:

> t u t i l . exe −?

Strings printed by the t program can be captured by the t utility with the following
command:

> t u t i l . exe −channel=0 −l i s t e n −1

Where ’-1’ means "forever".

1.1.3.2 Running in Standalone Mode

To run the t program in standalone mode (e.g. Kvaser Memorator Pro 2xHS v2
connected to a CAN bus and not a USB bus), you must compile your program(s)
and then download the generated binary file(s) with the Kvaser Memorator Config
Tools.

1.1.4 Inherited Settings Versus t Program Settings

As already stated, there are two ways of starting a t program - a configuration
downloaded by the Kvaser Memorator Config Tools or a CANlib application like
tutil.exe. The bus parameters for the CAN bus must be set before the bus can be
used. This can be done either via CANlib, the Kvaser Memorator Config Tools, or
directly in a t program. Additionally, to send and recieve CAN FD messages in a t
program, the CAN FD communication mode and the bus parameters for the
arbitration phase and the data phase, must be set through a t program.

The simple rule is: the last one to set the bus parameters "wins".

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 8 (92)

1.1.4.1 Start-up Sequence in Standalone Mode

When in standalone mode, the t program starts automatically when the device
powers on.

In this case, the bus settings from the log configuration are used. The program
does not need to setup the bus or go bus-on since these steps have already been
handled before the program starts.

However, the t program may change the bus settings. The following is the start-up
sequence in standalone mode:

1. The device is connected to the CAN bus; power on

2. The device reads configuration

3. The device sets the bus parameters and goes bus-on

4. The t program loads, starts, and optionally changes the bus parameters

1.1.4.2 Start-up with CANlib Application

When using CANlib to start a t program, the CANlib program or the t program must
set the bus parameters and activate a channel on the bus. If the CANlib program
sets the bus parameters, the t program can still re-configure the bus settings.

1.2 Introduction to the t Language for CAN

If you have programmed in C or C++, most of the t language will look very familiar.
However, the event based nature of t means that a t program looks slightly
different. Some C language features are missing, such as unsigned integers, union
types and pointers, while some features from other languages have been
incorporated.

1.2.1 Simple Example

on start {
canBusOff();
canSetBitrate(canBITRATE_1M);
canSetBusOutputControl(canDRIVER_SILENT);
canBusOn();

}

on stop {
canBusOff();

}

on CanMessage 54321x {
printf("Hello, User!\n");

}

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 9 (92)

This program simply prints the text “Hello, User!” to the standard output when the
program detects a CAN message with the extended identifier 54321 (decimal) is
received.

1.2.2 More Complex Example

variables {
const int can_channel = 0;
const int can_bitrate = 1000000;
Timer sendTimer;
int value;

}

on start {
printf("Hello again! It's the Second Example speaking..\n");
printf("Send message 1000 and I will send another one.\n");
value = 0;

canBusOff(can_channel);
canSetBitrate(can_channel, can_bitrate);
canSetBusOutputControl(can_channel, canDRIVER_NORMAL);
canBusOn(can_channel);

sendTimer.timeout = 1000; // Milliseconds
timerStart(sendTimer, FOREVER);

}

on stop {
canBusOff(can_channel);

}

on CanMessage<1> 1000 {
CanMessage msg;
msg.id = 123;
msg.dlc = 8;
msg.flags = 0;
msg.data = "\x11\x22\x33\x44\x55\x66\x77\x88";
canWrite(msg);

}

on Timer sendTimer {
CanMessage msg;
msg.id = 1234;
msg.dlc = 2;
msg.flags = canMSG_EXT;
msg.data[0] = value;
msg.data[1] = value >> 8;
value++;
canWrite(msg);

}

This program will send one CAN message with standard identifier 123 (decimal)
each time a CAN message with identifier 1000 is received on channel 1. The

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 10 (92)

program will also send a CAN message with extended identifier 1234 once every
second.

1.2.3 Receive Example

on start {
printf("Hello again! It's the Third Example speaking.\n");
printf("Receive a message.\n");

}

on CanMessage<*> [*] {
printf("Pling! Message %d received, with %d bytes of data:",

this.id, this.dlc);
for(int i = 0; i < this.dlc; i++) {

printf("%02x ", this.data[i]);
}
printf("\n");

}

This program will receive any CAN message and print the message’s data to the
standard output.

1.3 Elements of a t Program

A t program consists of a sequence of constructs. The order is irrelevant, except
that a construct is not visible before it is declared. None of the constructs are
mandatory, and there can be any number of any construct. One or more CAN
database files can also be used.

The possible constructs are:

• variables section, contains definitions of global variables, constants, and
types

• envvar section, contains declarations of communication variables

• event hook, connects a desired code response to a specific event

• function definition, a piece of code that can be called from elsewhere in the
program

• function declaration, establishes a function’s interface without providing the
function definition

1.3.1 The variables Section

All variables, constants, and types that need to be global (accessible from multiple
hooks or functions) must be defined in a variables section. This is equivalent to
defining something in global scope in a C program.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 11 (92)

Example

variables {
const int LENGTH = 80;
const char filename[13] = "file.dat";
int count = 0;
char text[LENGTH] = filename;
float x, y;

}

1.3.2 The envvar Section

Environment variables are used to communicate between different t programs or
with a PC using CANlib. Environment variables are defined in the envvar section,
and just like variables in the variables section, environment variables are
global.

Example

envvar {
int option;
char message[8];
float angle;

}

1.3.3 Event Hooks

All events that a t program will react to are specified using various on event hooks.
In effect, these are functions which are called when the specific events occur.
Among other events, the program can react to the arrival of a CAN message, the
elapse of a timer, or the start of the program itself.

Example

on start {
count = 0;

}

on CanMessage 100 {
length = this.dlc;
message = this.data;

}

1.3.4 Function Definitions

You can define your own functions in t . This can greatly enhance the usability of
the language. Each function definition is placed at the outermost level in the
program file, in the same way as a variables section.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 12 (92)

Example

void send (int id, const byte data[])
{

CanMessage msg;
msg.flags = canMSG_EXT;
msg.id = id;
msg.dlc = data.count;
msg.data = data;
canWrite(msg);

}

1.3.5 Function Declarations

Sometimes using a function before the function is defined is necessary or
preferable. For that reason, the language supports function declarations. The
function declaration prepares the compiler by describing the function’s interface.

Example

void report(char text[]);
float getAngle(void);

1.3.6 CAN Databases (.dbc Files)

While writing a t program without CAN database files is possible, using a CAN
database file is a good idea. By using a CAN database file, the compiler can
generate typedef and struct members to match the signals in the database,
as well as automatically handle any specified scaling of the signals.

Example

on CanMessage StartRamps {
ramp_amp = this.Amplitude.Phys;
ramp_offset = this.Offset.Phys;

}

When compiling this program, we need to add the database containing
"StartRamps" like this:

> scc . exe −dbase=my_database . dbc my_prog . t

When working with multiple databases, two databases might define the same
message. To clarify which definition should be used, a logical name should be
assigned to the database. For example, if we have two databases with "rpm" as
shown below:

database1.dbc:

...
BO_ 43 rpm: 8 Vector__XXX
SG_ value : 0|16@1+ (1,0) [0|5000] "RPM" Vector__XXX

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 13 (92)

database2.dbc:

...
BO_ 143 rpm: 8 Vector__XXX
SG_ value : 0|16@1+ (1,0) [0|20000] "RPM" Vector__XXX

Then we need to establish a unique logical name for the database during
compilation:

> scc . exe −dbase=my@database1 . dbc −dbase=their@database2 . dbc
my_prog . t

Now the logical name can be used in the program:

Example

on CanMessage my_rpm {
// ID = 43, RPM: 0 - 5000

}

on CanMessage their_rpm {
// ID = 143, RPM: 0 - 20000

}

Note that the compiler does not take max/min values from the database into
account when generating code for signal access. This means that a read/write
from/to a signal outside the signal’s bounds will NOT cause an exception or
saturation.

Also note that the t language does not support unsigned integer or double types.
This means unsigned to signed conversions could produce the wrong result. Also,
signals defined as type double in the database cannot be used.

For more information on how to compile with a database file, see:

> scc . exe −?

1.3.7 Exception Handling

The t program environment has a built in exception handler that will print some
useful information and then stop the program where the exception occurred. For
examples on how to write your own handler, see Section 2.10.2.10, exception,
on Page 39.

If an exception hook is not provided, the program will be stopped.

1.4 Device dependent functionality

Some devices have physical limits that renders some functions unusable, e.g. the
timeGetDate function would not do anything useful on a device that does not
have a real time clock. Consult the device User Guide for information about any
restrictions regarding t functionality.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 14 (92)

2 t Language Reference

This document describes the t language as implemented in version 3.12 of the t
compiler (scc.exe).

2.1 Types

t has a small number of predefined types, which can be used as building blocks for
more complex types. The run-time library defines additional complex types and
more can be automatically generated when using database files.

2.1.1 Predefined Types

The following types are predefined:

Type Meaning

float A 32-bit floating point number

int A 32-bit signed integer

char An 8-bit character (signed integer)

byte An 8-bit unsigned integer

The char and byte types are always treated as int in expressions (after sign
extending for char).

When an operator can take float arguments, if one of the operands is an int
and the other operand is a float, the int is converted to float before being
used.

For operators that only take int arguments, any float is converted to an int
before being used. Automatic type conversion from float to int is also done for
array indexing and switch statements.

2.1.2 Run-time Library Types

The run-time library defines the following types:

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 15 (92)

Type Use

FileHandle Opaque type for dealing with files

XmlHandle Opaque type for dealing with XML files

CanTpHandle Opaque type for dealing with CAN transport protocol sessions

LedHandle Opaque type for dealing with LEDs

EnvVar Opaque type for dealing with environment variables

Timer Partly opaque type for dealing with timers – see 2.34.1

CanMessage Both sent and received CAN messages are of this type – see 2.34.2

CanMessageFd Both sent and received CAN FD messages are of this type –
see 2.34.3

CanTpMessage Used to report CAN transport protocol events – see 2.34.4

IoEvent Used for I/O events, see 2.34.8

tm Calendar data and time – see 2.34.5

ExceptionData Contains information about an exception – see 2.34.6

2.1.3 Type declarations

New data types are created through type declarations. Type declarations are
indicated by typedef. Currently, typedef only supports the structure complex
data type (similar to C structures and Pascal records) which is indicated using the
keyword struct.

A structure is composed of a list of variable declarations. Each declared variable is
considered a member of the structure.

A structure member behaves like any other variable of the same type with one
exception. Currently, a structure member that is a predefined type cannot be
passed by reference unless the member is an array. Arrays are always passed by
reference.

A structure can only be given values by assigning a value to each contained
member. Assigning values to the whole structure is currently not supported.

Syntax

typedef struct '{'
struct_body

'}' ident ';'

struct_body is one or more member declarations using the same syntax as
variable declarations. ident is the name of the type being defined.

Example

variables {
typedef struct {

byte data[4];
} Temporary;

typedef struct {

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 16 (92)

int control[3];
Temporary temp;
CanMessage msg;

} aacinfo;
}
...

aacinfo aac;
aac.control[0] = 0x251;
aac.temp.data = 0;

2.1.4 Explicit Type Conversion (typecast)

In addition to the automatic type conversion described in section 2.1.1, explicit type
casts can be performed for the following data types: float, int, char, and
byte. The syntax is the same as C.

Syntax

'(' type_name ')' expression

type_name is the desired resulting data type and expression is the value being
converted.

Example

int p = (int)M_PI;
int y = x * (int)round(f(t));
float seconds = (float)milliseconds / 1000;
int delta = (char)msg.data[2];
log((byte)++seqno);

2.1.5 Arrays

t supports arrays of any data type. Arrays are always range checked on use,
meaning any attempt to use an array to access memory outside the array’s range
will cause an exception. The number of elements in an array can be accessed
using the array variable’s count member.

An array element behaves like any other variable of the same type with one
exception. Currently, an array element that is a predefined type cannot be passed
by reference. If the array element is a structure, the element can be passed by
reference since structures are always passed by reference.

Array assignment is supported for arrays of predefined data types. If a scalar value
is assigned to the array, all elements in the array will be set to the scalar value. If
the assignment is another array, all data will be copied into the destination array. If
the assignment is from a smaller array, old data is left at the end of the destination
array. If the assignment is from a larger array, any extra data at the end is ignored.

Wherever an array can be used, so can a slice of the array. A slice is simply a
reference to a subset of elements in the array. A slice’s subset can be created in
three different ways:

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 17 (92)

• the ‘..’ range operator specifies a start and end index

• the ‘,’ range operator specifies a start index and a total element count

• the ‘+’ operator specifies a start index

Example

a = b
vector[i] = t / 3;
counts[0 .. 5] = 0; // Elements 0, 1, ..., 5
data[n * 8, 8] = msg.data; // Elements 8n, 8n + 1, ..., 8n + 7
total = my_sum(v + (f - 1)); // Elements v + f - 1, v + f, ...

// v is an array, f is a number
i = messages.count;

The parenthesis are necessary for the calculation of total in the example above. If
the parenthesis were removed, the compiler would consider v + f a temporary
array and the −1 would be an attempt at a negative offset. If f − 1 produces a
negative value during execution, the resulting negative offset will be treated like
any other out-of-range access (i.e. an exception will be thrown).

Note: t only supports one-dimensional arrays. The effect of multiple dimensions
can be achieved by using arrays of structures containing arrays.

2.2 Variables and constants

A variable or constant is defined in a variables section (which makes the object
globally visible) or in a block (which makes the object local to that block). Like in
C++, variables and constants can be defined anywhere within a block, not just at
the beginning of a block. Also like C++, a variable can be defined in a for-loop
statement. In this case, the variable’s scope is limited to the loop.

Example

{
int total = 3;
x = y * 3 + total;
const float angle = M_PI * 0.75;
float length = vector * sin(angle);
for(int n = 0; n < total; n++) {

...
}
...

}

A variable initializer defined in a variables section is executed during program
initialization.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 18 (92)

2.2.1 Variable Definitions

In variable definitions the data type datatype is either a predefined type or a
user-defined type, size is a constant expression, and initializer is appropriate for
the associated data type.

Syntax

datatype ident ['[' size ']'] ['=' initializer]
[',' ident ['[' size ']'] ['=' initializer] ...] ';'

Note: No default initialization is performed for any variable. Default initialization
for references is "BAD".

2.2.1.1 Static Variables

Inside a block, a variable’s storage class can be specified as static. Like in C, this
means that the variable’s value is retained upon exiting and re-entering the block.
If the static variable uses an initializer, the initializer will only be executed on the
first pass of the variable definition.

Example

int engineSpeed, engineType = 3;
float height = length * tan(angle);
char text[20] = "Hello World!", data[2] = {7, Max_size - 2};
static int count = 0;

2.2.2 Variable Initializers

Scalar variable initializers are not restricted, whether defined in a variables
section or a block. However, an array initializer must be a constant expression.

Arrays can be initialized using a list of expressions. Arrays of type char or byte
can also use a special string initializer. Initializing with a string is equivalent to
putting all the separate characters in sequence in a normal array initializer, except
that the string always contains an implicit ’\0’ at the end of the array. The string
initializer can be replaced by a defined char array constant.

The compiler will indicate an error if the initializer is too large to fit in the array. But
if the initializer is smaller than the array, the remaining elements will be undefined.

Example

float angles[2] = {M_PI * 0.5, M_PI * 1.3};
char texts[10] = "\x02Hi\x05Hello";

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 19 (92)

2.2.3 Constant Definitions

A constant is defined in a variables section (making the constant visible
globally) or inside a block (making the constant local to the block).

The constant expression (constexpr) which defines the constant’s value may only
use other constants. However, the expression can be arbitrarily complex, since the
expression is evaluated at compile time.

Only float, int, and array of char constants are allowed.

Syntax

const (int | float) ident '=' constexpr
[',' ident '=' constexpr ...] ';'

const char ident '[' ']' '=' string ';'

Example

const float pi = 3.141592;
const int loops = 100, maxloops = loops * 3;
const char filename[] = "report.txt";

2.2.4 Reference Variable Definitions

It is possible to create a reference to a variable, or part of a variable, with the same
result as if it had been passed as a reference argument to a function (see
Section 2.5.1, Function definitions, on Page 21). That is, any access using the
reference will operate directly on the original variable, or part of variable.
Reference variables are mainly useful to simplify code.

The references themselves are not assignable, and can thus only be set using an
initializer. This also means that it is impossible to ever have a reference to
something that is out of scope.

The compiler will automatically infer the type of the reference from its initializer.

Syntax

auto ident '=' '&' expr ';'

Example

auto fileno = &filename[6..7];
auto values = &table[n].row[i].col;
auto speed = &msg.data[2];

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 20 (92)

2.2.5 Reserved Keywords

The following keywords are reserved and may not be used as identifiers:

__internal, __pragma_internal, action, and, auto, bool, break,
byte, CanMessage, CanMessageFd, CanTpMessage, case, catch,
char, class, const, continue, default, delete, do, double,
else, enum, envvar, exception, export, extern, false, float,
for, goto, if, init, input, int, key, long, monitor, mutex,
namespace, new, not, on, or, output, postfilter, prefilter,
private, protected, public, register, return, semaphore, short,
short, signal, signed, sizeof, start, startup, static, stop,
stopped, string, struct, switch, thread, throw, timer, true,
try, typedef, union, unsigned, using, va_arg, va_end, va_list,
va_start, variables, while, void, volatile, xor

2.3 Serialization and Deserialization

When using data files, or when communicating with another program, it is often
useful to be able to convert data from structure form to an array of bytes, and the
other way around. This is called serialization and deserialization, respectively. In t
this is done by simply assigning an arbitrary structure to an appropriately sized
array of char / byte, and vice versa.

The result of serialization is what is sometimes called a packed array with the
contents from the structure. That is, there is no padding between values for
alignment. Also, any compiler/runtime internal parts of the structure in question
have been removed. Values of typeint and float are stored in little endian
format (i.e. with the least significant byte first).

To find out how many bytes are needed for a serialized structure, use sizeof()
(see Section 2.32.3, sizeof, on Page 80).

Example

char buf[sizeof(CanMessage)];
CanMessage incoming_msg, outgoing_msg;
...
buf = incoming_msg;
fileWriteBlock(outfile, buf);
...
fileReadBlock(infile, buf);
outgoing_msg = buf;

2.4 Environment Variables

An environment variable can only be defined in an envvar section. Like a variable
defined in a variables section, an environment variable is visible globally.
Further, an environment variable is visible to other t programs as well as a
connected PC.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 21 (92)

The lifespan of an environment variable is from when the first t program using the
environment variable loads until the last t program using the environment variable
unloads. All t programs using the same environment variable must be loaded
before accessing it. To access environment variables on a PC, use the Kvaser
CANlib script API for environment variables.

Unlike ordinary variables, environment variables cannot be initialized or accessed
directly in the t program. Rather, consider them handles and use
envvarSetValue and envvarGetValue to access their contents.

When a script is started, the environment variables will be updated during the start
up. Environment variables should therefore not be accessed in the on start
hook, where the environment variables may be out of date.

Syntax

int ident ';'
float ident ';'
char ident '[' size ']' ';'

ident is the name of the environment variable and size is a constant expression.
size is limited to ENVVAR_MAX_SIZE. The three data types shown are the only
environment variable data types supported.

Example

envvar {
int CANidToPC;

}

on CanMessage * {
envvarSetValue(CANidToPC, this.id);

}

2.5 Functions

Like in C, functions are subroutines used to encapsulate a section of code to give it
a clear interface and make it reusable. Functions can call each other and
themselves, freely.

2.5.1 Function definitions

The function definition specifies the return type of the function, its name and
parameters, and the function body.

Syntax

datatype ident '(' formal_parameters ')' fun_body

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 22 (92)

The function’s return type is specified by datatype. formal_parameters is a
sequence of:

[const] datatype ['&'] ident ['[' ']']
[',' [const] datatype ['&'] ident ['[' ']'] ...]

When the formal parameter’s name (ident) is preceded by ‘&’, the parameter is
passed by reference. If the formal parameter’s name is succeeded by ‘[]’, the
parameter is an array.

The data types int, float, char, and byte are passed by value. To pass an
int, float, char, or byte by reference; place an ampersand, ‘&’, in front of the
parameters name in the function declaration and in front of the argument when
calling the function. Arrays and structures are always passed by reference.

Array and structure parameters may have their types preceded by the keyword
const, which means the formal parameter may not be modified by the function.
Passing a non-constant argument via a constant formal parameter is legal.
However, passing a constant argument via a non-constant formal parameter is an
error that is enforced by the compiler.

Though not supported in user code, the run time library makes use of a special
case where the last parameter may be ‘. . . ’ (three consecutive periods). This
indicates that the function takes a variable number of arguments.

Example

int testfunction (int inparam)
{

return inparam;
}

void testfun2 (int &p, int q)
{

p = 34;
q = 23;

}
...
int i = 1, j = 2;
testfun2(&i, j);

After the call to testfun2, i will be 34 and j will be 2.

2.5.2 Function Declarations

Function declarations describe a function’s interface allowing the function to be
used before the function definition occurs. The function return type and parameter
types must match those specified in the function definition.

Syntax

datatype ident '(' formal_parameters ')' ';'

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 23 (92)

formal_parameters are defined as in Section 2.5.1, Function definitions, on
Page 21.

Example

int testfunction(int inparam);
void testfun2(int &p, int q);

2.5.3 Function overloading

A function name in t need not be unique. Like in C++, a function may be
overloaded by defining several different functions with the same name but different
formal parameters. However, each definition of the overloaded function must have
the same return type.

When parsing a function call, the compiler will find the set of overloaded functions
that could fit the arguments, with or without implicit casting. Then the compiler will
begin a closer examination of the matches starting with the first argument. For
every argument, any function that does not match as well as the closest matching
function found will be excluded from further testing. If the compiler resolves to a
single candidate, that candidate is chosen. Otherwise, an error is reported.

Exact matches are always preferred. Arrays, structures, and references need exact
matches except for:

• byte and char, which are interchangeable (but with preference for an exact
match)

• CanMessage and CanMessage_X (database defined message), where a
formal parameter of type CanMessage can accept a CanMessage_X, but
not the reverse.

A string constant matches both a constant char array and a constant byte array,
with preference for the former.

For numeric types, automatic casting is done as necessary by order of preference
(higher number preferred):

Actual parameter Formal parameter Preference

int int / byte / char 2

float 1

float float 2

int / byte / char 1

Note: There are no byte/char actual parameters, since these types are always
implicitly cast to int when used. Thus, the compiler will not allow attempts to
overload functions based on these types.
This means that functions can not differ only in what integer type a parameter
has. While byte/char are considered identical for overloading purposes, int
versus either of them is disallowed if there are no other distinguishing (as in non-
castable) parameters.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 24 (92)

Example

int f(int a, int b);
int f(int a);
int f(float a, byte b[]);
...
f(2, "Hi"); // '2' will be cast to float.
f(M_PI); // M_PI will be cast to int.

2.6 Control Flow Statements

The statements in this section determine which parts of a program get executed,
and in what order.

2.6.1 The if Statement

If the conditional expression (cond_expr) evaluates to a nonzero value, the
condition is considered to be true and the code in code_or_block_1 is executed.
Otherwise, code_or_block_2 is executed, if available.

Syntax

if '(' cond_expr ')'
code_or_block_1

[else
code_or_block_2]

Example

if (speed >= 90) {
printf("OK!");

} else {
printf("Speed up!");

}

2.6.2 The while Statement

As long as the conditional expression cond_expr evaluates to a nonzero value, the
conditional expression is considered true and the code in code_or_block is
executed. code_or_block is executed after evaluating cond_expr. If the first
evaluation of cond_expr evaluates to false, code_or_block is never executed.

Syntax

while '(' cond_expr ')'
code_or_block

Example

while (speed++ < 90) {
printf("Speed up!");

}

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 25 (92)

2.6.3 The do Statement

While the conditional expression cond_expr evaluates to a nonzero value the
expression is considered true and the code in code_or_block is executed.
code_or_block is executed before cond_expr is evaluated. The do statement
guarantees that code_or_block is always executed at least once, unlike the while
statement described above.

Syntax

do
code_or_block

while '(' cond_expr ')' ';'

Example

do {
printf("Speed up!");

} while (speed++ < 90);

2.6.4 The for Statement

First, the assignment assignment1 is executed. For as many iterations as the
conditional expression cond_expr evaluates to true, code_or_block is executed.
The statement ’assignment2’ is executed after each iteration of the loop. If the first
evaluation of cond_expr evaluates to false, assignment2 and code_or_block are
never executed.

Like in C++, assignment1 may contain variable definitions. Variables defined in this
manner will only have scope local to the loop.

Syntax

for '(' [assignment1] ';' cond_expr ';' [assignment2] ')'
code_or_block

Example

for(int x = 0; x < array.count; x++) {
array[x] = x * 2;

}

Note: In t , cond_expr cannot be empty.

2.6.5 The switch Statement

For selection between multiple choices, the switch statement can be useful.
Only constant integer case expressions are allowed (float data types are cast to
int). A default case will be executed if expr does not evaluate to any of the
defined constant case expressions.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 26 (92)

Like C/C++, the keyword break must be placed at the end of a case, or execution
will fall through to the next case.

Syntax

switch '(' expr ')' '{'
cases

'}'

Example

switch (x) {
case 1:

printf("One\n");
break;

case 2:
printf("Two\n");
break;

default:
printf("Unknown\n");
break;

}

2.6.6 The return Statement

The return statement terminates the function currently executing. Program
control is returned back to the function from which the terminated function was
called. A function that declares a return type of void cannot supply an expression
expr as shown below. A function that declares a return type that is not void must
supply an expr.

Syntax

return expr ';'
return ';'

2.6.7 The break Statement

A break statement terminates the nearest enclosing while, do, for, or switch
statement. Execution resumes at the statement immediately following the
terminated statement.

Syntax

break ';'

Example

for (x = 0; x < array.count; x++) {
if (array[x] == searched_value) {

break;
}

}

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 27 (92)

2.6.8 The continue Statement

A continue statement causes the current iteration of the nearest enclosing
while, do, or for statement to terminate. Unlike the break statement, the
continue statement terminates only the current iteration.

Syntax

continue ';'

Example

for (x = 0; x < array.count; x++) {
if (array[x] != searched_value) {

continue;
}
count++;
//... do some processing

}

2.7 Expressions

The following operators are defined. They are listed in the order of decreasing
priority.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 28 (92)

Operator Meaning Priority

(expr) Parenthesis can be used to group expressions 13

++ variable Increase the variable by one, then use the resulting value 12

-- variable Decrease the variable by one, then use the resulting value 12

variable ++ Use the variable’s value, then increase it by one 12

variable -- Use the variable’s value, then decrease it by one 12

function call Not an operator; inserted to show its relative priority 11

! Logical NOT 10

~ Bitwise NOT 10

unary - Define/change the sign of the operand 10

unary + Define/change the sign of the operand 10

(type) Cast to a given type 9

* Multiply 8

/ Divide 8

% Modulo 8

Binary + Addition 7

Binary - Subtraction 7

& Bitwise AND 6

| Bitwise OR 5

^ Bitwise XOR 5

<< Left shift 4

>> Right shift 4

== Equal 3

!= Not equal 3

>= Greater than or equal 3

<= Less than or equal 3

< Less than 3

> Greater than 3

&& Logical AND 2

|| Logical OR 1

The operators *, /, %, +, -, &, |, ^, <<, and >> may be used in a more compact form
when combined with the assignment operator =. The operation and the
assignment are combined, like a += b which is equal to a = a + b.

Note: The && (logical AND) and || (logical OR) operators use short-circuit evalu-
ation like C/C++.

Example

// There will never be an exception below, since the
// part of the expression to the right of && will not be
// evaluated if the part to the left of it is untrue.
if ((++i < values.count) && (values[i] != 0)) {

return 1;
}

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 29 (92)

2.8 Blocks

To group code, enclose the statement(s) in curly braces, { and }. Such a group is
called a block. Variables and constants defined in a block have scope local to that
block.

Example

{
int buf[80]; // Invisible outside this block!
get_report(buf);
printf("%s\n", buf);

}

2.9 Comments

C++ style comments can be used to make the t program more readable.

Example

// The end of this line is ignored by the compiler
/* and so is everything in here */

2.10 Hooks

Hooks are a central part of the t language. They are triggered when the specified
external or internal event occurs. The language treats hooks as functions, most of
which have an implicit parameter called this. The this parameter has different
types for different hooks.

Like a function whose return type is void, it is possible to exit from a hook using a
return statement.

The following hooks are currently defined:

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 30 (92)

Hook Triggered when

on start Program execution is started.

on stop Program execution is stopped.

on key key A key is pressed.

on Timer timer A timer expires. Several timers can be forced to use the same
handler.

on envvar variable The specified environment variable is updated.

on CanMessage message A CAN message arrives.
Allows for symbols from a database, numbers, constant
expressions and wildcards.

on CanMessageFd message A CAN FD message arrives.
Allows for symbols from a database, numbers, constant
expressions and wildcards.

on CanTpMessage event A CAN transport protocol message event occurs.
Named events can be set up per transport protocol handle for:
- transmission completed
- start of arrival
- arrival completed

on IoEvent event An I/O event arrives.
The cause of the event must be specified and can be e.g. that
a voltage exceeded a threshold or that a digital input changed
from HIGH to LOW.

on exception An exception has occurred.

2.10.1 Hook Execution Order

The execution order of the hooks is independent of the order the hooks appear in
the program file, except for hooks of the same type. Hooks of the same type are
executed in the order they appear in the file. Figure 1 on Page 31 shows which
hooks are run when the program is loaded, started, and stopped.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 31 (92)

Program loaded

Initialize variables in any
variables section

Run all on start hooks

Program running

Run all on stop hooks

Load program

Start program

Stop program

Figure 1: Hook execution order

2.10.2 Hook Details

2.10.2.1 start

The on start code block is run when program execution starts.

Syntax

on start block

Example

on start {
printf("Program starting...\n");

}

2.10.2.2 stop

The on stop code block is run when program execution is stopped.

Syntax

on stop block

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 32 (92)

2.10.2.3 key

The on key code block is executed when the keyboard key(s) specified by the
key argument is pressed. If more than one on key block is defined with the same
key, the code contained in all the blocks will run in sequence.

As a special case, an asterisk ‘*’ can be used as the key argument. This means
that each time a key is pressed, the code block will be executed if a more specific
on key for the pressed key does not exist.

Another special case is an asterisk in brackets. Using “[*]” as the key argument is
the same as ‘*’ except the code block will always be executed even if there is a
more specific on key for the key pressed. The more specific on key will then be
executed as normal.

Within the block, you can use this to refer to the key that triggered the hook.

Syntax

on key key block

Example

on key 'A' {
// handle key 'A'

}

on key * {
// Handle any key, except 'A' and '*'

}

on key '*' {
// Handle key '*'

}

on key [*] {
// Handle any key
printf("'%c' pressed\n", this);

}

2.10.2.4 Timer

The on Timer block is automatically bound (by name) to a previously defined
Timer variable. A timer may also be manually bound using
timerSetHandler(). When using an array of timers, all timers will
automatically bind by name to the same on Timer handler, but you can manually
bind the timers to different on Timer blocks.

The on Timer code is run when the timer specified by the timer argument
expires. If a timer expires without being bound to an on Timer block, the
expiration will be ignored and no exception will be thrown.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 33 (92)

By default, timers in t are single-shot. This means the timer expires only once and
can then be re-enabled if required. Since the timer handler could have been
delayed for various reasons, restarting the timer inside of the handler is likely to
cause drift in the interval over time.

A timer can be setup as periodic. In this case, the timer can execute at a certain
interval a number of times, or forever. While the timer handler’s invocation could
still be delayed, the next interval will be suitably shortened to compensate.

Within the block, this refers to the actual timer that expired and gives access to
the timeout value and a user settable timer id.

The minimum timeout for a timer is 1 millisecond. Keep in mind that several timers
can expire at the same time and in that case virtual machine has to be able to
process them all. It will not be able to continue with processing consequent events
and logging messages until it is done with handlers.

Syntax

on Timer timer block

Example

variables {
Timer msgTimer;

}

on start {
msgTimer.timeout = 100; // 100 ms
msgTimer.id = 42;
timerStart(msgTimer);

}

on Timer msgTimer {
timerStart(msgTimer);
printf("Timer %d expired\n", this.id);

}

2.10.2.5 envvar

The on envvar hook is called when someone has updated an environment
variable. In this context, updated includes the setting of the same value as before.
The on envvar hook will also be called when a script is restarted, if the
environment variables have been updated since the last run.

Syntax

on envvar envvar block

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 34 (92)

To get the value of the environment variable envvar, use envvarGetValue().

Example

envvar {
char Msg[128];
int Value;

}

on envvar Value {
char tmp_msg[128];
int v;
envvarGetValue(Msg, tmp_msg);
envvarGetValue(Value, &v);

}

2.10.2.6 CanMessage

The on CanMessage code block is executed when the specified CAN message
arrives. The block will not be executed for CAN FD messages, for which the on
CanMessageFd hook is used instead.

Using postfilter is equivalent to not specifying a filter. In this case the on
CanMessage hook is invoked after any trigger block filtering (see Section 2.26.1,
filterDropMessage, on Page 70). With prefilter, the hook is invoked before
the trigger block filtering.

If no channel is specified, the CAN channel associated with the program is
implicitly used. A ‘*’ signifies reception from any channel.

For message, the number and constant_expression correspond to the identifier of
the CAN message. They can be followed by one or more of the following letters:

• X or x The identifier is an extended (29-bit) identifier.

• R or r The message is a remote frame.

When ident is used, the string is expected to correspond to a message definition in
a CAN message database specified when compiling (see Section 1.3.6, CAN
Databases (.dbc Files), on Page 12).

As a special case, an asterisk ‘*’ can be used as the message. This means that
each time a CAN message arrives the code block will be executed if a more
specific on CanMessage block does not exist for the received message identifier.

Another special case is an asterisk in brackets. Using “[*]” is the same as ‘*’ except
the code block will be executed even if a more specific on CanMessage block
exists for the received message identifier. The more specific on CanMessage
block will then be executed as normal.

When specified, mask is used to decide which bits in the incoming message
identifier should be checked against the message. Any bits not set in the mask are
irrelevant to the comparison.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 35 (92)

Within the block, this is used to reference the CAN message that triggered the
action.

Error frames are only received when using the special on CanMessage
errorframe hook. In this case, the contents of this are undefined except for
the canMSG_ERROR_FRAME flag.

Syntax

on [filter] CanMessage [channel] message [mask] block
on [filter] CanMessage [channel] errorframe block

where

filter := prefilter
| postfilter

channel := '<' '*' '>'
| '<' constant_expression) '>'

message := ident
| number [x] [r]
| '(' constant_expression ')' [x] [r]
| '*'
| '[' '*' ']'

mask := '&' number
| '&' '(' constant_expression ')'

Example

on CanMessage<*> 0xF00400x & 0xf00fff {
// Handle all non-FD messages with 29-bit IDs, where
// (id & 0xf00f00) == 0xF00400 (hex)

}

on CanMessage 123rx {
// Handle remote request of 29-bit identifier 123 (decimal)
// on the channel associated with the program.

}

on CanMessage (msgId) {
// Handle messages with message id defined by the constant
// msgId on the channel associated with the program.

}

on prefilter CanMessage TrigData {
// Handle the TrigData (database name) message, before the
// trigger mechanism, on the channel associated with the
// program

}

on CanMessage<0> (engine_msg + 3) x {
// Handle engine message 4 on channel 0 here.

}

on CanMessage * {

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 36 (92)

// Handle any non-FD message, except 0xF00400x, 123rx, ...
// on the channel associated with the program.

}

on CanMessage<1> [*] {
// Handle any non-FD message on channel 1.

}

2.10.2.7 CanMessageFd

The on CanMessageFd code block is executed when the specified CAN FD
message arrives. A CAN FD message is distinguished from an ordinary CAN
message by having the canMSGFD_FDF flag set. As in on CanMessage, the
number and the constant_expression correspond to the identifier of the CAN FD
message, and can be followed by an x, which signifies that the identifier is an
extended (29-bit identifier).

All that applies to on CanMessage also applies to on CanMessageFd, with the
following exceptions:

• Remote frames are not part of CAN FD messages, so unlike
on CanMessage, the r (signifying a remote frame) is not allowed after the
identifier.

• An error frame is always considered an ordinary CAN message and thus only
captured in on CanMessage.

Syntax

on [filter] CanMessageFd [channel] message [mask] block

where

filter := prefilter
| postfilter

channel := '<' '*' '>'
| '<' constant_expression) '>'

message := ident
| number [x] [r]
| '(' constant_expression ')' [x] [r]
| '*'
| '[' '*' ']'

mask := '&' number
| '&' '(' constant_expression ')'

Example

on CanMessageFd<*> 0xF00400x & 0xf00fff {
// Handle all CAN FD messages with 29-bit IDs, where
// (id & 0xf00f00) == 0xF00400 (hex)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 37 (92)

}

on CanMessageFd 123x {
// Handle 29-bit identifier 123 (decimal)
// on the channel associated with the program.

}

on CanMessageFd (msgId) {
// Handle messages with message id defined by the constant
// msgId on the channel associated with the program.

}

on prefilter CanMessageFd TrigData {
// Handle the TrigData (database name) message, before the
// trigger mechanism, on the channel associated with the
// program

}

on CanMessageFd<0> (engine_msg + 3) x {
// Handle engine message 4 on channel 0 here.

}

on CanMessageFd * {
// Handle any CAN FD message, except 0xF00400x, 123x, ...
// on the channel associated with the program.

}

on CanMessageFd<1> [*] {
// Handle any CAN FD message on channel 1.

}

2.10.2.8 CanTpMessage

The on CanTpMessage block is executed when an event connected to name
occurs. The connection is established using canTpSetHandler().

Within the block, this refers to a CanTpMessage where a result code and a user
settable timer id are always present. For a successful reception event, the data
member is also populated.

Syntax

on CanTpMessage name block

Example

variables {
CanTpHandle cantp;

}

on start {
canTpOpen(cantp, 4, 6, "ISO-15765",

iso15765_Fixed | iso15765_Physical);

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 38 (92)

canTpSetAttr(cantp, iso15765_RxTimeout, 1000);
canTpSetHandler(cantp, "cantpHandler",

iso15765_RxIndication);
}

on CanTpMessage "cantpHandler" {
if (this.result != canTp_OK) {

printf("CanTp receive error: %d\n", this.result);
} else {

printf("Received: %s\n", this.data);
}

}

2.10.2.9 IoEvent

The on IoEvent code block is executed when the specified I/O event arrives.
The source of the event is a called a pin and there are two different input pin types,
analog and digital. Use kvIoPinGetInfo() to check which type a pin has and if
it is an input or output pin. See Section 2.35.19.4, Properties, on Page 90 for
further information on pins.

Digital input pins generate events for rising and falling edges,
kvIO_EVENT_RISING_EDGE and kvIO_EVENT_FALLING_EDGE.

Analog input pins generate events when the voltage exceeds or falls below a
threshold, kvIO_EVENT_VALUE_ABOVE and kvIO_EVENT_VALUE_BELOW. It it
also possible to get an event when the voltage changes a significant amount,
kvIO_EVENT_VALUE_CHANGED, by using hysteresis, see
kvIoPinSetInfo().

Note: kvIoConfirmConfig() will fail if the pin type doesn’t match the type expected
by the event, e.g. using analog events on digital pins or using output pins.

Syntax

on IoEvent < pin > [type] [value]

where

pin := number
type := 'kvIO_EVENT_RISING_EDGE', 'kvIO_EVENT_FALLING_EDGE'

| 'kvIO_EVENT_VALUE_ABOVE', 'kvIO_EVENT_VALUE_BELOW',
'kvIO_EVENT_VALUE_CHANGED'

value := number
| '(' constant_expression ')'

Example

on IoEvent < 16 > kvIO_EVENT_RISING_EDGE {
// Rising edge on digital input pin number 16 detected.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 39 (92)

}

on IoEvent < 4 > kvIO_EVENT_VALUE_ABOVE 6.5 {
// Voltage exceeds 6.5V on analog input pin 4.
printf("Voltage: %f.\n", this.value);

}

on IoEvent < 0 > kvIO_EVENT_CONFIG_CHANGED {
/* The configuration has changed. Check configuration

and call kvIoConfirmConfig() to accept the new
configuration. */

}

2.10.2.10 exception

The on exception code block is executed when an unrecoverable situation
within a function occurs.

Syntax

on exception block

block can contain variable definitions; such definitions are local to block. If more
than one on exception code block is defined, each code block will execute in
sequence.

Within block, this references the error that triggered the exception
(see Section 2.34.6, ExceptionData, on Page 82). Only read access is allowed,
since this is constant in an on exception block.

Execution of the code directly after the function call that triggered the exception will
be aborted.

Example

// Example of an exception handler that notifies the user
// by blinking the power LED.

variables {
Timer ex_timer;
LedHandle ex_led;
int ex_led_state[2] = {LED_STATE_OFF, LED_STATE_ON};

}

on exception {
ledOpen(ex_led, LED0);
ex_timer.timeout = 777; // ms
ex_timer.id = 0;
timerStart(ex_timer, FOREVER);

}

on Timer ex_timer {
ledSet(ex_led, ex_led_state[this.id]);

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 40 (92)

this.id ^= 1;
}

Example

void dump_exception(const ExceptionData e);
void dump_ints(const int data[]);

on exception {
dump_exception(this);

}

// Exception data dump in the same format as the built-in one.
// (See sample files for a version that uses no local data.)
void dump_exception (const ExceptionData e)
{

printf("Execution error %d at %d after %d cycles.\n",
e.error, e.pc, e.cycle);

if (e.line) {
printf("Execution stopped after/at line %d.\n", e.line);

} else {
printf("Line number information excluded from code.\n");

}
printf("Stack (%d):\n", e.stack.count);

int fp = e.locals;
for(int sp = e.stack.count - 1; sp >= 0; sp--) {

int frame_size = e.stack[fp - 1];
if (sp >= fp + frame_size) {

printf("%4d: 0x%08x %11d\n", sp, e.stack[sp],
e.stack[sp]);

} else {
if (frame_size) {

printf("Locals (%d @ 0x%08x):\n",
frame_size * 4, e.stack_base + fp * 4);

dump_ints(e.stack[fp, frame_size]);
}
sp -= frame_size;
sp--;
fp = e.stack[sp--];
if (sp >= 0) {

printf("Return address: %d\n", e.stack[sp]);
}

}
}

printf("Globals (%d):\n", e.globals.count);
dump_ints(e.globals);

}

// Dump integers with address, hex and ASCII.
void dump_ints (const int data[])
{

char buf[80];

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 41 (92)

for(int i = 0; i < data.count; i += 4) {
int j;
for(j = 0; (j < 4) && (i + j < data.count); j++) {

sprintf(buf + j * 9, "%08x ", data[i + j]);
}
buf[j * 9 .. 4 * 9 - 1] = ' ';
buf[4 * 9, 16] = '.';
for(j = 0; (j < 16) && (i + j / 4 < data.count); j++) {

byte b = data[i + j / 4] >> (8 * (j % 4));
if ((b >= 32) && (b < 127)) {

buf[4 * 9 + j] = b;
}

}
buf[4 * 9 + j] = '\0';
printf("%04x: %s\n", i * 4, buf);

}
}

2.11 Using CAN Databases

When you connect one or more CAN database files to an interface, all messages
in the databases become available as types, prefixed by the string:

CanMessage_

For example, if a message SpeedData is defined in the database, you can define a
variable spd like this:

CanMessage_SpeedData spd;

Assuming the message SpeedData consists of the signal Speed, you can then use

spd.Speed.Raw

or

spd.Speed.Phys

to access the Speed signal in the message. The former will access the “raw” value
of the signal – the actual contents of the CAN message regardless of the scaling
defined in the database. The latter will access the scaled value according to the
database definition. Floating point values of 16, 32 and 64 bit size are supported
(IEEE754-2008), as specified in the database. Since t only has a 32 bit floating
point type, automatic conversion is done on fetch/store.

2.12 #include

t allows a source code file to refer to another code file by including the file. This will
behave exactly as if the contents of the included file had been inserted at that point
in the source code.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 42 (92)

Syntax

#include " file_name "

If you use < and > around the file name, the compiler will search in a system
directory.

Example

#include <linlib.t>

2.13 #error

To enforce compilation errors, for example while using conditional compilation (see
Section 2.15 Conditional Compilation), a special directive can be used. The
supplied text will be output by the compiler as an error message.

Example

#error too large buffer requested.

2.14 #warning

To enforce compilation warnings, for example while using conditional compilation
(see Section 2.15 Conditional Compilation), a special directive can be used. The
supplied text will be output by the compiler as an warning message.

Example

#warning buffer may be too small

2.15 Conditional Compilation

Unlike C/C++, t does not have a pre-processor. However, the ability to do
conditional compilation, even controlled by options passed to the compiler on the
command line, is still available.

2.15.1 Command Line Options

Both integer and string values can be passed on the command line. They end up
as constant declarations in a compiler generated variables section, situated
just before the first line of user code. There is no limit to the number of constants
set up this way.

Syntax (on the compiler command line)

−Dconstant_integer_name=number
−Dconstant_string_name []= text

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 43 (92)

Example

scc -Dcount=10 -Dsize=80 "-Dgreeting[]=Hello World!" program.t

The command line above will cause the following to be compiled as if it had been
at the top of source code file:

Example

variables {
const int count = 10;
const int size = 80;
const char greeting[] = "Hello World!";

}

The text given for a named constant is copied into the variables section as is,
without any checking whatsoever. Any errors will be caught by the compiler and
the reported line number will be consistent with the example variables section
above.

2.15.2 #if / #else / #endif

Conditional compilation in t is done as part of the language itself. Thus, any
named integer constant in scope is at the disposal of a conditional. No expressions
are allowed in the conditionals themselves, but the full constant expression
calculation capabilities of t can be used earlier to set things up.

As in other Boolean expressions, zero is considered false and any other value true.

Nesting of conditional compilation directives is not supported.

Syntax

#if (ident | integer)
...
[#else]
...
#endif

Example

variables {
const int dump_data = DEBUG && VERBOSE;

}

#if dump_data
void dumpToFile(int data[])
{
...
}
#else
void dumpToFile(int data[]) { /* Do nothing */ }
#endif

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 44 (92)

2.15.3 #ifdef / #ifndef

Conditional compilation in t is done as part of the language itself. Thus, any
identifier in scope is considered defined.

Nesting of conditional compilation directives is not supported.

Syntax

#ifdef ident
...
[#else]
...
#endif

#ifndef ident
...
[#else]
...
#endif

Example

#ifndef output
void output(char *text)
{
printf("%s\n", text);

}
#endif

#ifdef DEBUG
variables {

char dbgbuf[1024];
}
#endif

2.16 Predefined Output Functions

2.16.1 printf

Prints the string fmt to the standard output. The string fmt may contain formatting
characters just like the C language printf().

Syntax

void printf(const char fmt[], ...)

If the standard output is not displayed anywhere, you will not see any output from
the printf calls.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 45 (92)

The format string can contain regular characters and conversion specifiers.
Regular characters are simply printed. Conversion specifiers begin with a percent
symbol and are shown below:

Conversion specifier Meaning

%d Prints argument as a signed decimal number

%c Prints argument as a character

%s Prints argument as a string

%x Prints argument as a hexadecimal number

%u Prints argument as an unsigned decimal number

%f, %g Prints argument as a floating-point number

%% Prints a percent sign

%d, %u, %x, and %s can take a number directly after the %, which specifies the
number of characters the result should use (right justified). %d, %u, and %x can
have an initial zero that specifies that the fill characters to the left should be zeros
instead of the default space.

2.17 Predefined File I/O Functions

This section describes the functions that are predefined in t for doing input/output
on files.

2.17.1 fileOpen

Opens the file with the given filename using the specified flags. A negative error
code is returned on failure.

Syntax

int fileOpen(FileHandle file, const char filename[])
int fileOpen(FileHandle file, const char filename[], int flags)

The handle file is used to refer to the file. The possible flags are:

OPEN_READ Only read is allowed from the file

OPEN_WRITE Read and write is allowed

OPEN_APPEND Like OPEN_WRITE, but an automatic seek to the end is done

OPEN_TRUNCATE Like OPEN_WRITE, but any previous contents are deleted

No value in flags is equivalent to OPEN_WRITE.

2.17.2 fileClose

Closes the file whose handle is file (previously returned from fileOpen).

Syntax

void fileClose(FileHandle file)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 46 (92)

2.17.3 fileGets

Reads a line from file. The result is placed in buffer. You may specify the maximum
length to read.

The number of characters read is returned when successful. Otherwise, a negative
error code is returned.

Syntax

int fileGets(const FileHandle file, char buffer[])
int fileGets(const FileHandle file, char buffer[],

int bufferSize)

2.17.4 fileReadBlock

Reads a block from file. The result is placed in buffer. You may specify the length
to read.

The number of characters read is returned when successful. Otherwise, a negative
error code is returned.

Syntax

int fileReadBlock(const FileHandle file, char buffer[])
int fileReadBlock(const FileHandle file, char buffer[],

int bufferSize)

2.17.5 filePuts

Writes the string buffer to file. You may specify the maximum length to write.

The number of characters written is returned on success. Otherwise, a negative
error code is returned.

Syntax

int filePuts(const FileHandle file, const char buffer[])
int filePuts(const FileHandle file, const char buffer[],

int bufferSize)

2.17.6 fileWriteBlock

Writes the block buffer to file. You may specify the length to write.

The number of characters written is returned on success. A negative error code is
returned on failure.

Syntax

int fileWriteBlock(const FileHandle file, const char buffer[])
int fileWriteBlock(const FileHandle file, const char buffer[],

int bufferSize)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 47 (92)

2.17.7 fileSeek

Repositions the offset of the file. The whence argument determines how offset is
used to reposition. If whence is SEEK_CUR, the new position is offset bytes from
the current position. If whence is SEEK_SET, the new position is offset bytes from
the start of the file. If whence is SEEK_END, the new position is offset bytes from
the end of the file.

If the operation was successful, the resulting offset location, in bytes, from the
beginning of the file is returned. Otherwise, a negative error code is returned.

Syntax

int fileSeek(const FileHandle file, int offset, int whence)

Note: fileSeek will not extend a file. For example, a fileSeek beyond the
end of the file will set the position to the end of file.

2.17.8 fileDelete

Deletes the file whose name is passed in filename.

A negative error code is returned on failure.

Syntax

int fileDelete(const char filename[])

2.18 Predefined XML Functions

The XML parser is not a full-featured one, but the parser can handle data
organized in structure/array form and attributes. Unless otherwise specified,
parsing is restarted from the beginning of the data for every access.

The XML parser is not capable of accessing extra data that comes after a sub-tag.
This should never happen in an XML file that describes an actual data structure,
however, this practice is common in XHTML, for example to add a line break
(“
”).

Also, the XML parser cannot deal with entities and other things that are not
necessary to describe a data structure.

2.18.1 xmlOpen

Opens the file with the given filename for XML access using OPEN_READ mode.
The handle can then be used to refer to the file.

A negative error code is returned on failure.

Syntax

int xmlOpen(XmlHandle handle, const char filename[])

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 48 (92)

2.18.2 xmlClose

Closes the XML access handle.

Syntax

void xmlClose(XmlHandle handle)

2.18.3 xmlGet

Finds a specific item or attribute in the XML data referred to by handle. The
supplied buffer buf will be used to store the result. Optionally, the position in the
XML data where searching for the tag is to begin can be specified. The position will
then be updated to point to where the tag was found.

Syntax

int xmlGet(XmlHandle handle, char buf[], ...)
int xmlGet(XmlHandle handle, char buf[], int &position, ...)

The field/attribute to search for is specified using a sequence of strings, or string
and number pairs.

• Strings are checked against the XML tags hierarchically. As a special case,
the very last string may instead refer to an attribute.

• Numbers signify indexing into a sequential list of the same tag type. A
missing index is equivalent to 0.

• At the very end, XML_ATTR can be used to specify that the final string is an
attribute to access.

• XML_DATA may optionally be used at the end to specify that the tag data
should be accessed. An asterisk (‘*’) may be used to match an arbitrary
tag/attribute string.

Indexing works as expected, with any tag/attribute at the same hierarchical level
matching. If XML_TAG is used at the end, the name of the tag will be fetched
instead of the tag’s data.

Example file

<Whatever>Aberforth
<Misc>Bellatrix

<Someone>Cedric</Someone>
</Misc>
<Data>

<Something>Dedalus</Something>
<Something>Ellerby</Something>
<Nothing/>

</Data>
<Data>

<Something>Fulbert</Something>
<SomethingElse what="Gellert" who="Hagrid" />

</Data>
</Whatever>

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 49 (92)

Example t code

variables {
char name1[80];
char name2[80];

}
on start {

name1[0] = 0;
name2[0] = 0;
XmlHandle file;
if (xmlOpen(file, "params.xml") >= 0) {

xmlGet(file, name1, "Whatever", "Data", "Something", 1);
xmlGet(file, name2, "Whatever", "Data", 1, "SomethingElse",

"who", XML_ATTR);
xmlClose(file);

}
}

2.19 Predefined Math Functions

The trigonometric functions for sine, cosine, and tangent of an angle all assume
the argument is expressed in radians. In the same way, the return values of the
inverse trigonometric functions are expressed in radians.

So, when your angle is expressed in degrees, this is the formula:

radians = degrees * M_PI / 180

2.19.1 sin

Returns the sine of x. The return value will be between -1.0 and 1.0, inclusive.

An exception is thrown if x is infinite.

Syntax

float sin(float x)

2.19.2 cos

Returns the cosine of x. The return value will be between -1.0 and 1.0, inclusive.

An exception is thrown if x is infinite.

Syntax

float cos(float x)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 50 (92)

2.19.3 tan

Returns the tangent of x.

An exception is thrown if x is infinite.

Syntax

float tan(float x)

2.19.4 asin

Returns the arcsine of x; that is the value whose sine is x.

An exception is thrown if x falls outside the range -1.0 to 1.0. Otherwise, the
function returns the arcsine in radians. The returned value is mathematically
defined to be between -M_PI / 2 and M_PI / 2, inclusive.

Syntax

float asin(float x)

2.19.5 acos

Returns the arccosine of x; that is the value whose cosine is x.

An exception is thrown if x falls outside the range -1.0 to 1.0. Otherwise, the
function returns the arccosine in radians. The returned value is mathematically
defined to be between 0 and M_PI, inclusive.

Syntax

float acos(float x)

2.19.6 atan

Returns the arctangent of x; that is the value whose tangent is x. The arctangent is
returned in radians and it is mathematically defined to be between -M_PI / 2 and
M_PI / 2, inclusive.

Syntax

float atan(float x)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 51 (92)

2.19.7 abs

Returns the absolute value of the argument.

Syntax

float abs(float x)

2.19.8 ceil

Returns the smallest integer value not less than x.

Syntax

float ceil(float x)

2.19.9 floor

Returns the largest integer value not greater than x.

Syntax

float floor(float x)

2.19.10 randomize

Initializes the random number generator with a physically random
(see Section 2.27.4, cryptoRandom, on Page 73) seed or with a specified one.

The sequence of numbers returned by random() after specifying a given seed is
always the same.

Syntax

void randomize()
void randomize(int seed)

2.19.11 random

The WELL512 pseudo random number generator is used to generate a random
number modulo x. Unless randomize() is used, the seed at startup is physically
random.

While the random numbers given by WELL512 are of very good quality,
cryptoRandom() should be used if cryptographic security is required [1].

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 52 (92)

Returns an integer random number in the interval 0 .. x-1, for x > 0. The full 32 bit
number is given for x == 0. For x < 0, the results are undefined.

Syntax

int random(int x)

2.19.12 sqrt

Returns the square root of x.

An exception is thrown if x is negative.

Syntax

float sqrt(float x)

2.19.13 exp

Returns the value of the natural exponential function at the floating-point parameter
x. That is, e to the power of x.

Syntax

float exp(float x)

2.19.14 exp10

Returns 10 to the power of x.

Syntax

float exp10(float x)

2.19.15 round

Returns x rounded to the nearest integer. Numbers half-way between two integers
are rounded away from zero.

Syntax

float round(float x)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 53 (92)

2.19.16 log

Returns the natural logarithm of x.

An exception is thrown if x is negative.

Syntax

float log(float x)

2.19.17 log10

Returns the base 10 logarithm of x.

An exception is thrown if x is negative.

Syntax

float log10(float x)

2.20 Predefined String Functions

Strings in t are null-terminated character arrays like in C. This means the last byte
contains the character code 0 which represents the ASCII NUL character. The
language also takes advantage of the fact that an array’s size is known.

If no maximum lengths are specified for these functions, the lengths of the relevant
array arguments are used instead. Accesses outside the arrays cannot be caused
by these functions.

2.20.1 strlen

Returns the length of the string s, not including any terminating null character. A
maximum length can be specified.

Syntax

int strlen(const char s[])
int strlen(const char s[], int length)

2.20.2 strcpy

Copies the string src (adding a terminating null character, if there is room) to the
string dest. A maximum length can be specified.

Returns the number of characters that were copied.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 54 (92)

Syntax

int strcpy(char dest[], const char src[])
int strcpy(char dest[], const char src[], int length)

Note: Only the portion that will fit in dest is copied.

2.20.3 strcat

Appends the string src to the string dest, overwriting the terminating null character
at the end of dest, and adding a terminating null character to the end. A maximum
length can be specified.

Returns the number of characters that were appended.

Syntax

int strcat(char dest[], const char src[])
int strcat(char dest[], const char src[], int length)

Note: Only the portion that will fit in dest is copied.

2.20.4 strcmp

Returns an integer less than zero if s1 is found to be less than s2. Returns an
integer equal to 0 if s1 matches s2. Returns an integer greater than zero if s1 is
found to be greater than s2. A maximum length can be specified.

Syntax

int strcmp(const char s1[], const char s2[])
int strcmp(const char s1[], const char s2[], int length)

2.20.5 sprintf

Behaves like printf() but puts the result into the string str. The receiving string
must be sufficiently long.

Returns the number of characters put into str on success. A negative error code is
returned on failure.

Syntax

int sprintf(char str[], const char fmt[], ...)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 55 (92)

2.20.6 atoi

Discards any leading white space in the string s, then interprets the rest as an
integer in ASCII format. Interpreting stops when the end of the string is reached or
when a character that cannot be interpreted as part of the integer is encountered.
For example, the character is not of the base being used.

Returns the integer found in the string s.

Syntax

int atoi(const char s[])
int atoi(const char s[], int base)

Unless specified, base defaults to 10. A base of zero, or one that is too large to be
represented using ‘a’–‘z’, will cause an exception to be thrown.

Example

code = atoi("11001101011110101", 2);
data = atoi("-84820473");

2.20.7 atof

Discards any leading white space in the string s, then interprets the rest as a
floating point number in ASCII format. Interpreting stops when the end of the string
is reached or a character that cannot be interpreted as part of the floating point
number is encountered. Decimal point is accepted, as is ‘e’ notation for exponent.

Returns the float found in the string s.

Syntax

float atof(const char s[])

Example

angle = atof("-2.3425561134");
distance = atof("3.5e5");

2.20.8 itoa

Converts number into the specified base and places the result in buffer. A buffer
size can be specified.

Base 10 numbers will be handled as signed. All other bases as unsigned.
Normally bases higher than 10 will have the alphabetic digits in lower case.
Negating the base forces alphabetic digits into upper case instead.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 56 (92)

Returns the number of characters put into str on success. A negative error code is
returned on failure.

Syntax

int itoa(int number, char buffer[], int base)
int itoa(int number, char buffer[], int base, int bufferSize)

2.21 Predefined CAN Related Functions

2.21.1 canWrite

This function queues the CAN message msg for transmission. The message is
sent on the channel that the program is connected to if channel is not specified.

Returns a negative error code on failure (queue full is always a possibility).

Syntax

int canWrite(const CanMessage msg)
int canWrite(int channel, const CanMessage msg)
int canWrite(const CanMessageFd msg)
int canWrite(int channel, const CanMessageFd msg)

The following members in msg must be filled out:

id The identifier of the message

dlc The length of the message. If this value is greater than 8, the value
will still be passed on to the CAN driver, which will make an attempt
to send using the value. More than 8 data bytes will only be sent if
the message is a CAN FD message and the target channel is set to
CAN FD mode.

flags A combination of CAN message flags. See Section 2.35.3, CAN
Message Flags, on Page 84 for further information.

data The data in the message.

2.21.2 canGetTimestamp

Provides access to the timestamp that every received CanMessage and
CanMessageFd contains.

The function considers scale to be an unsigned integer. A scale value of 0 is a
special case interpreted as one larger than the maximum unsigned integer. The
result is that the function will return the high integer of the timestamp in response.
The optional remainder will contain the remainder of the integer division of the
timestamp by scale.

Returns the result of an integer division of the timestamp (microseconds) from msg
by scale.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 57 (92)

Syntax

int canGetTimestamp(const CanMessage msg, int scale)
int canGetTimestamp(const CanMessage msg, int scale,

int &remainder)
int canGetTimestamp(const CanMessageFd msg, int scale)
int canGetTimestamp(const CanMessageFd msg, int scale,

int &remainder)

2.21.3 canSetBitrate

This function sets the nominal bitrate on the CAN bus to bitrate. The operation is
performed on the CAN channel the program is connected to if channel is not
specified. You have to be bus-off when you call this function.

Predefined bitrates are used to set all nominal bus timing parameters to compatible
values. See canSetBusParams() for details on bus parameters. For valid
predifined values, see Section 2.35.5, CAN Bitrates, on Page 85 for classic CAN,
and see Section 2.35.6, CAN FD Bitrates, on Page 85 for CAN FD.

Returns the bitrate that was set, or a negative error code on failure.

Syntax

int canSetBitrate(int bitrate)
int canSetBitrate(int channel, int bitrate)

The various parameters are as follows:

bitrate The desired bitrate in bits per second, or as a predefined value;
see Section 2.35.5, CAN Bitrates, on Page 85 for classic CAN, and
see Section 2.35.6, CAN FD Bitrates, on Page 85 for CAN FD.

channel The CAN channel on which to set the bitrate.

2.21.4 canSetBitrateFd

This function sets the data phase bitrate in CAN FD mode on the CAN bus to
bitrate. The operation is performed on the CAN channel the program is connected
to if channel is not specified. You have to be bus-off when you call this function.

Predefined bitrates are used to set all CAN FD bus parameters to compatible
values. See canSetBusParamsFd() for details on bus parameters, and
Section 2.35.6, CAN FD Bitrates, on Page 85 for valid predefined bitrate values.

Returns the bitrate that was set, or a negative error code on failure.

Syntax

int canSetBitrateFd(int bitrate)
int canSetBitrateFd(int channel, int bitrate)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 58 (92)

The various parameters are as follows:

bitrate The desired data phase bitrate as a predefined value;
see Section 2.35.6, CAN FD Bitrates, on Page 85.

channel The CAN channel on which to set the bitrate.

2.21.5 canSetBusParams

This function sets the nominal bus timing parameters for the CAN bus in classic
CAN. This function is also used for the arbitration phase when the channel is set in
CAN FD mode. The function operates on the CAN channel the program is
connected to if channel is not specified. You have to be bus-off when you call this
function.

Instead of specifying all parameters, predefined bitrate can be used to set all
nominal bus timing parameters to compatible values. For valid predifined values,
see Section 2.35.5, CAN Bitrates, on Page 85 for classic CAN, and
see Section 2.35.6, CAN FD Bitrates, on Page 85 for CAN FD.

Returns a negative error code on failure.

Syntax

int canSetBusParams(int bitrate, int tseg1, int tseg2, int sjw,
int samples)

int canSetBusParams(int channel, int bitrate, int tseg1,
int tseg2, int sjw, int samples)

The various parameters are as follows:

bitrate The desired bitrate in bits per second, or a predefined value
(see Section 2.35.5, CAN Bitrates, on Page 85 for classic CAN, and
see Section 2.35.6, CAN FD Bitrates, on Page 85 for CAN FD).

tseg1 The desired number of quanta in time segment 1 (the number of
quanta before the sampling point minus 1).

tseg2 The desired number of quanta in time segment 2 (the number of
quanta after the sampling point).

sjw The synchronization jump width is the maximum number of quanta
that the CAN controller will add to or subtract from a bit in order to
resynchronize the clock.

samples The number of samples to be used per bit. Can be 1 or 3. Will
default to 1 sample on devices not suporting 3.

2.21.6 canSetBusParamsFd

This function sets the bus timing parameters for the CAN bus for the data phase
when the channel is set in CAN FD mode. The function operates on the CAN

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 59 (92)

channel the program is connected to if channel is not specified. You have to be
bus-off when you call this function.

Instead of specifying all parameters, predefined bitrate can be used to set all
CAN FD bus parameters to compatible values. See Section 2.35.6, CAN FD
Bitrates, on Page 85 for valid predefined bitrate values.

Returns a negative error code on failure.

Syntax

int canSetBusParamsFd(int bitrate, int tseg1, int tseg2,
int sjw)

int canSetBusParamsFd(int channel, int bitrate, int tseg1,
int tseg2, int sjw)

The various parameters are as follows:

bitrate The desired data phase bitrate in bits per second, or a predefined
value from Section 2.35.6, CAN FD Bitrates, on Page 85.

tseg1 The desired number of quanta in time segment 1 (the number of
quanta before the sampling point minus 1).

tseg2 The desired number of quanta in time segment 2 (the number of
quanta after the sampling point).

sjw The synchronization jump width is the maximum number of quanta
that the CAN controller will add to or subtract from a bit in order to
resynchronize the clock.

2.21.7 canGetBusParams

Gets the currently set classic CAN bus parameters including bus output control
mode. The function operates on the CAN channel the program is connected to if
channel is not specified.

Returns a negative error code on failure.

Syntax

int canGetBusParams(int &freq, int &tseg1, int &tseg2, int &sjw,
int &samples, int &mode)

int canGetBusParams(int channel, int &freq, int &tseg1,
int &tseg2, int &sjw, int &samples,
int &mode)

int canGetBusParams(int &freq, int &tseg1, int &tseg2, int &sjw,
int &samples)

int canGetBusParams(int channel, int &freq, int &tseg1,
int &tseg2, int &sjw, int &samples)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 60 (92)

The various parameters are as follows:

freq The bitrate in bits per second.

tseg1 The number of quanta in time segment 1 (the number of quanta
before the sampling point minus 1).

tseg2 The number of quanta in time segment 2 (the number of quanta
after the sampling point).

sjw The synchronization jump width is the maximum number of quanta
that the CAN controller will add to or subtract from a bit in order to
resynchronize the clock.

samples The number of samples to be used per bit. Can be 1 or 3.

mode Bus output control mode, see Section 2.35.7, CAN Driver Modes, on
Page 85 for valid mode values.

2.21.8 canGetBusParamsFd

Gets the currently set CAN FD bus parameters. The function operates on the CAN
channel the program is connected to if channel is not specified.
See Section 2.21.6, canSetBusParamsFd, on Page 58 for details on the
parameters.

Returns a negative error code on failure.

Syntax

int canGetBusParamsFd(int &freq, int &tseg1, int &tseg2,
int &sjw)

int canGetBusParamsFd(int channel, int &freq, int &tseg1,
int &tseg2, int &sjw)

The various parameters are as follows:

freq The data phase bitrate in bits per second.

tseg1 The number of quanta in time segment 1 (the number of quanta
before the sampling point minus 1).

tseg2 The number of quanta in time segment 2 (the number of quanta
after the sampling point).

sjw The synchronization jump width is the maximum number of quanta
that the CAN controller will add to or subtract from a bit in order to
resynchronize the clock.

2.21.9 canBusOff

This function takes the CAN channel off-bus. The function operates on the CAN
channel the program is connected to if channel is not specified.

Returns a negative error code on failure.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 61 (92)

Note: You might receive a few CAN messages after calling canBusOff. Those
CAN messages were received before the CAN channel went off-bus and are al-
ready pending hook events, see Section 2.10, Hooks, on Page 29.

Syntax

int canBusOff()
int canBusOff(int channel)

2.21.10 canBusOn

This function takes the CAN channel on-bus. The function operates on the CAN
channel the program is connected to if channel is not specified.

Returns a negative error code on failure.

Note: The bus parameters for the CAN bus must be set before the bus can be
used, see Section 1.1.4, Inherited Settings Versus t Program Settings, on Page 7.

Syntax

int canBusOn()
int canBusOn(int channel)

2.21.11 canSetCommunicationMode

This function sets the communication mode. The function operates on the CAN
channel the program is connected to if channel is not specified.
See Section 2.35.8, CAN Communication Modes, on Page 86 for valid canMode
values. You have to be bus-off when you call this function.

To send CAN FD messages, the communication mode must be set to either
canMODE_CAN_FD or canMODE_CAN_FD_NONISO. To send only classic CAN
messages, the communication mode may be set to canMODE_CAN.

Returns a negative error code on failure.

Note: To send CAN FD messages, CAN FD bus parameters must also be set,
see canSetBusParamsFd(), and canSetBitrateFd().

Syntax

int canSetCommunicationMode(int canMode)
int canSetCommunicationMode(int channel, int canMode)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 62 (92)

Example

variables {
const int can_channel = 0;

}

on start {
canBusOff(can_channel);
canSetBusParams(can_channel, canFD_BITRATE_1M_80P, 0, 0, 0,

0);
canSetBusParamsFd(can_channel, canFD_BITRATE_2M_80P, 0, 0, 0);
canSetCommunicationMode(can_channel, canMODE_CAN_FD);
canBusOn(can_channel);

}

on stop {
canBusOff(can_channel);

}

2.21.12 canGetCommunicationMode

Returns the current communication mode. The function operates on the CAN
channel the program is connected to if channel is not specified.
See Section 2.35.8, CAN Communication Modes, on Page 86 for return values.

Returns a negative error code on failure.

Syntax

int canGetCommunicationMode()
int canGetCommunicationMode(int channel)

2.21.13 canGetBusOutputControl

Returns the current driver mode. The function operates on the CAN channel the
program is connected to if channel is not specified. See Section 2.35.7, CAN
Driver Modes, on Page 85 for return values.

Returns a negative error code on failure.

Syntax

int canGetBusOutputControl()
int canGetBusOutputControl(int channel)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 63 (92)

2.21.14 canSetBusOutputControl

This function sets the driver mode. The function operates on the CAN channel the
program is connected to if channel is not specified. See Section 2.35.7, CAN
Driver Modes, on Page 85 for valid mode values. You have to be bus-off when you
call this function.

Returns a negative error code on failure.

Syntax

int canSetBusOutputControl(int mode)
int canSetBusOutputControl(int channel, int mode)

2.22 Predefined Timer Related Functions

The following functions for interacting with timers are predefined.

2.22.1 timerStart

Starts the timer t. The number of periods for which the timer should run
automatically can be specified.

Syntax

void timerStart(Timer t)
void timerStart(Timer t, int periods)

A single-shot timer can be reset inside the associated on Timer handler to get
periodic behavior. However, this will not guarantee a consistent period because
any delay in handling the timer will not affect the next period.

When a timer is set into periodic mode (FOREVER can be used to specify a
limitless number of periods), there may still be delays for any specific handler
invocation. But in this case, the delay will automatically be subtracted from the next
delay. For N periods, the total time will be N times the timer’s timeout (plus
whatever the delay is for the Nth invocation).

A timer that has a timeout of zero will not be started. This also means that a
periodic timer whose timeout is set to zero will stop after the timer’s next invocation.

If the timer was already active, the timer will be deactivated first.

Example

variables {
Timer refresh;
int rpm_value = 0;

}

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 64 (92)

on start {
refresh.timeout = 100; // 100 ms
timerStart(refresh, FOREVER);

}

on Timer refresh {
rpm_value++;
if (rpm_value >= 8000) {

rpm_value = 0;
}

}

2.22.2 timerCancel

Stops the timer t, if the timer is running.

Returns a negative error code if the timer was not running.

Syntax

int timerCancel(Timer t)

2.22.3 timerIsPending

Returns 0 if the timer is not active (i.e. has not been started with timerStart()).
If the timer is active, the number of milliseconds until the timer is due will be
returned. (If the timer has expired but the associated handler has not yet executed,
the function will return 1).

Syntax

int timerIsPending(const Timer t)

2.22.4 timerSetHandler

Sets the on Timer hook to use for timer t.

Often this function is not needed, since an on Timer hook can be specified for
every timer. However, this function allows dynamically created timers to be
connected to a hook, which can sometimes be useful. Or the function can be used
to have a single handler for multiple timers.

The timer structure contains an integer id member that can be used to identify
which timer caused the handler to be executed. The contents of that member are
user defined.

Returns a negative error code if the specified handler does not exist.

Syntax

int timerSetHandler(Timer t, const char hook[])

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 65 (92)

Example

variables {
Timer t;
Timer t1;
Timer t2;

}

on start {
t.timeout = 1000;
t.id = 100;
timerStart(t);

t1.timeout = 2000;
t1.id = 1;
timerSetHandler(t1, "timer_handler");
timerStart(t1);

t2.timeout = 3000;
t2.id = 2;
timerSetHandler(t2, "timer_handler");
timerStart(t2);

}

on Timer t {
printf("timer t, id=%d", this);

}

on Timer "timer_handler" {
printf("timer t1 or t2, id=%d", this);

}

2.23 Predefined Environment Variable Functions

Environment variables cannot be accessed directly like ordinary variables in a t
program. The functions in this section are used to access their values.

2.23.1 envvarSetValue

Sets the environment variable envvar to value. The actual update will be queued
and therefore delayed until the execution of the current hook has finished. A
notification that envvar is updated is then propagated to all programs who declare
the same environment variable and have a corresponding on envvar hook.
These on envvar hooks are called. A PC connected to the program can also get a
notification if canSetNotify() is configured correctly.

Do not set the same environment variable that you are handling in an on envvar
hook, since that would cause an infinite loop.

The environment variables are queued in a special queue where each environment
variable can only reside once. Each time an environment variable is updated, the
variable is placed at the end of the queue. This means that if the variable was in

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 66 (92)

the queue already, the variable will be moved back with the new value and the
older value is lost.

Returns the number of bytes put into envvar.

Syntax

int envvarSetValue(EnvVar envvar, int value)
int envvarSetValue(EnvVar envvar, float value)
int envvarSetValue(EnvVar envvar, const char value[])
int envvarSetValue(EnvVar envvar, const char value[], int

length)

2.23.2 envvarGetValue

Retrieves the last known value of the environment variable envvar. The result is
undefined if envvar is not initialized.

Returns the number of bytes fetched from envvar.

Syntax

int envvarGetValue(const EnvVar envvar, int &value)
int envvarGetValue(const EnvVar envvar, float &value)
int envvarGetValue(const EnvVar envvar, char value[])
int envvarGetValue(const EnvVar envvar, char value[],

int maxlength)

2.24 Predefined CAN Transport Protocol Related Functions

The built-in CAN transport protocols can be used to simplify programming. Data
will be transferred in the background, but certain events can be used to notify the
program about what is happening.

The built-in CAN transport protocols are currently only supported for classic CAN.
Only one instance of the built-in CAN transport protocol can be open per program
slot.

2.24.1 canTpOpen

Sets up a CAN transport (CanTP) session, to be referred to via the handle, for the
specified protocol (currently only ISO-15765 is available). Receive and transmit
identifiers are given by rxid and txid, respectively. Unless receive / transmit
address mode is specified (via addr_mode_rx and, optionally, addr_mode_tx), the
session will use Normal Physical 29 bit mode.

The possible address modes for ISO-15765 are:

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 67 (92)

• 11 / 29 bit

• Physical / Functional

• Normal / Fixed / Extended / Mixed

• Local / Remote.

Returns a negative error code on failure.

Syntax

int canTpOpen(CanTpHandle handle, int rxid, int txid,
const char protocol[])

int canTpOpen(CanTpHandle handle, int rxid, int txid,
const char protocol[],
int addr_mode_rx)

int canTpOpen(CanTpHandle handle, int rxid, int txid,
const char protocol[],
int addr_mode_rx, int addr_mode_tx)

2.24.2 canTpClose

Terminates the CanTP session referred to by handle.

Syntax

void canTpClose(CanTpHandle handle)

2.24.3 canTpTransmit

Transmit data using the CanTp session referred to by handle, possibly specifying
the maximum length.

For ISO-15765, transmit is not possible when a receive is under way (a separate
CanTp session may be used to accomplish that).

The maximum transfer length for ISO-15765 is 4095 bytes.

Returns a negative error code on failure.

Syntax

int canTpTransmit(const CanTpHandle handle, const byte data[])
int canTpTransmit(const CanTpHandle handle, const byte data[],

int length)

2.24.4 canTpAbort

Abort any current activity on the CanTp session referred to by handle.

Returns a negative error code on failure.

Syntax

int canTpAbort(const CanTpHandle handle)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 68 (92)

2.24.5 canTpSetHandler

Set a common handler, hook, for the CanTp session referred to by handle, or
specify that the handler should deal with a specific CanTp event.

Returns a negative error code on failure.

Syntax

canTpSetHandler(const CanTpHandle handle, const char hook[])
canTpSetHandler(const CanTpHandle handle, const char hook[],

int event)

For ISO-15765, the following events are available:

TxConfirmation Confirmation that a packet has been transmitted, or a failure code.

RxIndication Data received, or failure code.

FfIndication Data is incoming.

2.24.6 canTpSetAttr

For the CanTp session referred to by handle, set the given attribute attr to the
specified value.

Returns the value set or a negative error code on failure.

Syntax

int canTpSetAttr(const CanTpHandle handle, int attr, int value)

Most of the attributes are protocol specific, but the following applies to all CAN
transport protocols:

canTp_Id A user supplied id (for use when needed). Ends up in CanTpMessage
(this) on events.

For ISO-15765 the following are available (prefixed by iso15765_):

BS Receive_bs, supplied in transmitted messages.

STmin Separation Time minimum, supplied in transmitted messages.

TxTimeout Transmit timeout in milliseconds. Transmit will fail for longer control flow
delays.

RxTimeout Receive timeout in milliseconds. Reception will fail for longer delays.

WFTmax Wait For Transmit (number of times allowed).

Channel CAN channel to use (default channel is used otherwise).

Mask Mask for accepting received CAN messages (also set by canTpOpen()).

Code Id for accepting received CAN messages (also set by canTpOpen()).

A CAN id matches when:

identifier & Mask == Code & Mask

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 69 (92)

2.24.7 canTpGetAttr

For the CanTp session referred to by handle, get the specified attribute. The
attributes are protocol specific. See canTpSetAttr().

Returns the value of the attribute or a negative error code on failure.

Syntax

int canTpGetAttr(const CanTpHandle handle int attr)

2.25 Predefined t Program Related Functions

2.25.1 scriptLoad

Load a t program file called filename, using default CAN channel channel, into free
program slot slot. The program should be stored on the SD disk. The actual load of
the file is done when the current hook has finished. This means the return code
only reflects the execution of the scriptLoad command.

Returns zero on success or a negative error code on failure.

Syntax

int scriptLoad(int slot, int channel, const char filename[])

Example

// This program loads another t program on start

variables {
char file[10] = "test2.txe";
int slot = 1; // a program slot that is free
int channel = 0; // default CAN channel

}
on start {
printf("LOAD!");
int res = scriptLoad(slot, channel, file);
printf("scriptLoad, result=%d\n", res);

}

Note: Depending on hardware, there can be a limited number of program slots
for storing loaded programs.

2.25.2 scriptUnload

Unload the t program loaded in program slot slot. The actual unload of the
program is performed when the current hook has finished. This means the return
code only reflects the execution of the scriptUnload command.

Returns zero on success or a negative error code on failure.

Syntax

int scriptUnload(int slot)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 70 (92)

2.25.3 scriptStart

Start an already loaded program that resides in program slot slot. The actual start
of the program is performed when the current hook has finished. This means the
return code only reflects the execution of the scriptStart command.

Returns zero on success.

Syntax

int scriptStart(int slot)

2.25.4 scriptStop

Stop a started program that resides in program slot slot. The actual stop of the
program is performed when the current hook has finished. This means the return
code only reflects the execution of the scriptStop command.

Returns zero on success or a negative error code on failure.

Syntax

int scriptStop(int slot)

Example

// This program will make sure that there is another program
// running as long as this program is running

variables {
int slot = 2; // a program slot that is free
int channel = 0; // default CAN channel

}

on start {
scriptLoad(slot, channel, "test3.txe");
scriptStart(slot);

}

on stop {
scriptStop(slot);
scriptUnload(slot);

}

2.26 Predefined Logger Related Functions

2.26.1 filterDropMessage

This function can only be used in logger mode, in program slot 0 in an on
CanMessage hook. When a CAN message is filtered using
filterDropMessage(), the message will not be stored in the log file. Nor will
the message be handled by the built-in trigger mechanism.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 71 (92)

A CAN message stopped in an on prefilter CanMessage will not be handled
by any on CanMessage hook.

Removes the current message from the logger chain.

Returns a negative error code on failure.

Syntax

int filterDropMessage()

2.26.2 loggerStatus

This function can only be used in logger mode and in program slot 0.

Returns the current logger status (see Section 2.35.13, Logger Status, on
Page 88).

Syntax

int loggerStatus()

2.26.3 loggerStart

This function can only be used in logger mode and in program slot 0. This function
makes the device start recording CAN frames using the current bus settings and
stores a trigger event in the log file. If the device is already recording, only a trigger
event is stored.

Returns the current logger status (see Section 2.35.13, Logger Status, on
Page 88).

Syntax

int loggerStart()

Note: This function will not work if "Log everything" is selected in the Memorator
configuration.

2.26.4 loggerStop

This function can only be used in logger mode and in program slot 0. This function
makes the device stop recording to the log file. The device will not stop listening for
CAN frames, but will stop recording them.

Returns the current logger status (see Section 2.35.13, Logger Status, on
Page 88).

Syntax

int loggerStop()

Note: This function will not work if "Log everything" is selected in the Memorator
configuration.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 72 (92)

2.26.5 loggerSetPretrigger

This function can only be used in logger mode and in program slot 0. This function
sets the pretrigger time. The parameter ms is the pretrigger time in milliseconds. If
a pretrigger time is already set, from a previous call to loggerSetPretrigger or from
configuration file, the pretrigger wont change, and a negative error code will be
returned.

Returns zero on success or a negative error code on failure.

Syntax

int loggerSetPretrigger(int ms)

Note: The amount of disk space reserved for the pretrigger is calculated from a
worst case scenario, where full bus load on all available channels is assumed.
Thus, use long pretrigger time with caution.

2.27 Predefined Crypto Related Functions

2.27.1 cryptoHash

Calculates the digest of source using a specified type of hash algorithm. The
length of the data to be hashed can be specified.

If digest is not large enough to hold the hash, bytes to the right will be discarded.

Returns the normal size of the hash on success. A negative error code is returned
on failure.

Syntax

int cryptoHash(int type, byte digest[], const byte source[])
int cryptoHash(int type, byte digest[], const byte source[],

int length)

2.27.2 cryptoEncipher

Enciphers source by applying a specified type of cipher algorithm and a password.
The length of the data to be enciphered can be specified. The enciphered result
ends up in dest.

Depending on the cipher used, there may be length requirements on source and
password.

Returns a negative error code on failure.

Syntax

int cryptoEncipher(int type, byte dest[], const byte source[],
const byte password[])

int cryptoEncipher(int type, byte dest[], const byte source[],
int length, const byte password[])

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 73 (92)

2.27.3 cryptoDecipher

Deciphers source by applying a specified type of cipher algorithm and a password.
The length of the data to be deciphered can be specified. The deciphered result
ends up in dest. Depending on the cipher used, there may be length requirements
on source and password.

Returns a negative error code on failure.

Syntax

int cryptoDecipher(int type, byte dest[], const byte source[],
const byte password[])

int cryptoDecipher(int type, byte dest[], const byte source[],
int length, const byte password[])

2.27.4 cryptoRandom

Makes use of physical randomness in the device to generate a random number.
When an actual hardware random number generator is not available, some kind of
entropy extraction is used instead.

Returns a 32 bit random number.

Syntax

int cryptoRandom()

2.28 Predefined System Related Functions

2.28.1 sysGetValue

Enables the fetching of various system values. The desired information type is
specified and the result is returned in value or data.

Returns a negative error code on failure. The result ends up in value or data.

Syntax

int sysGetValue(int type, int &value)
int sysGetValue(int type, byte data[])

2.29 Predefined Customer Data Related Functions

2.29.1 customerDataGetLength

Enables the fetching of customer data values. The desired information
user_id(oem_id) is specified and the length, in bytes, of the contents are returned
in value.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 74 (92)

Returns a negative error code on failure. Returns 0 if OK.

Syntax

int customerdataGetLength(int user_id, int param_id, int
&value)

2.29.2 customerDataGetValue

Enables the fetching of customer data values. The desired information
user_id(oem_id) is specified and the contents are returned in data. Param_id must
be zero (presently not implemented).

Returns a negative error code on failure. Returns 0 if OK.

Syntax

int customerdataGetValue(int user_id, int param_id, byte data[])

2.30 Predefined LED Functions

2.30.1 ledOpen

Opens a handle to a LED and reserves the LED for a program. The LED will not be
affected by system events as long as the handle is open. The predefined values for
ledNumber are LED0, LED1, etc. (see Section 2.35.17, LED Constants, on
Page 89). Param_id must be zero (presently not implemented).

Returns zero on success or a negative error code on failure.

Syntax

int ledOpen(LedHandle led, int ledNumber)

2.30.2 ledClose

Close a handle to a LED and allow the LED to be controlled by system events
again.

Syntax

void ledClose(LedHandle led)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 75 (92)

2.30.3 ledSet

Set the state for a LED. The two available states are LED_STATE_ON and
LED_STATE_OFF. For further information see Section 2.35.17, LED Constants,
on Page 89.

Returns zero on success or a negative error code on failure.

Syntax

int ledSet(const LedHandle led, int ledState)

2.31 Predefined I/O Functions

I/O functions use a pin number to access each pin on the connected I/O modules.
Available pins are given consecutive integer pin numbers starting with 0 for the first
pin on the first module, 1 for the second pin on the first module, and so on until the
last pin on the last module.

The user should examine the pins with kvIoGetNumberOfPins and
kvIoPinGetInfo to verify that the configuration is as expected. The
configuration must then be confirmed with kvIoConfirmConfig before the pins
can be used.

Each t program must confirm the configuration before the pins can be used in that
program and the confirmation is lost if the program is stopped.

Note: Note that using any other functions than kvIoGetNumberOfPins and
kvIoPinGetInfo before the configuration has been confirmed will return an
error code.

Removing, adding or changing the order of the I/O modules will change the pin
numbers and an kvIO_EVENT_CONFIG_CHANGED event is sent to all running
programs to notify them that the pin numbers have changed.

The pins are enumerated to match the new configuration and the programs must
re-examine the pins and call kvIoConfirmConfig before the pins can be used
again.

2.31.1 kvIoConfirmConfig

Confirm the configuration.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoConfirmConfig(void)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 76 (92)

2.31.2 kvIoGetNumberOfPins

Get the number of I/O pins. Can be called before kvIoConfirmConfig.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoGetNumberOfPins(int &pinCount)

2.31.3 kvIoPinGetInfo

Get I/O pin properties, see 2.35.19.4 for property item codes and if the returned
value is integer or float. Can be called before kvIoConfirmConfig.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetInfo(int pin, int item, int &value)
int kvIoPinGetInfo(int pin, int item, float &value)

2.31.4 kvIoPinSetInfo

Set I/O pin properties, see 2.35.19.4 for property item codes that can be changed
and if the value is integer or float.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinSetInfo(int pin, int item, int value)
int kvIoPinSetInfo(int pin, int item, float value)

2.31.5 kvIoPinSetDigital

Set a digital output pin. Setting value to zero is LOW and any non-zero value is
HIGH.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinSetDigital(int pin, int value)

2.31.6 kvIoPinGetDigital

Get value from a digital input pin. Getting a value equal to zero corresponds to
LOW and any non-zero value is HIGH.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetDigital(int pin, int &value)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 77 (92)

2.31.7 kvIoPinSetAnalog

Set the voltage level on an analog output pin.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinSetAnalog(int pin, float value)

2.31.8 kvIoPinGetAnalog

Get the voltage level from an analog input pin.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetAnalog(int pin, float &value)

2.31.9 kvIoPinSetRelay

Set a relay output pin. Setting value to zero is OFF and any non-zero value is ON.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinSetRelay(int pin, int value)

2.31.10 kvIoPinGetOutputDigital

Get the latest set value from a digital output pin. This function reads values from
memory which is not necessarily the same as the actual voltage level that is
present on the output pin. Getting a value equal to zero corresponds to LOW and
any non-zero value is HIGH.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetOutputDigital(int pin, int &value)

2.31.11 kvIoPinGetOutputAnalog

Get the latest set voltage level from an analog output pin. This function reads
values from memory which is not necessarily the same as the actual voltage level
that is present on the output pin.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetOutputAnalog(int pin, float &value)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 78 (92)

2.31.12 kvIoPinGetOutputRelay

Get the latest set value of a relay output pin. If value equals zero, the relay has
been switched OFF any non-zero value means that it has been switched ON. This
function reads values from memory which is not necessarily the same as the actual
switch state that is present on the relay pin.

Returns zero on success or a negative error code on failure.

Syntax

int kvIoPinGetOutputRelay(int pin, int &value)

2.31.13 kvIoGetModulePins

This function is used to read all the pins on one module in a single call. The
supplied buffer is filled with one of the following structs:

kvIoModuleDigital This struct describes a digital add-on module.

kvIoModuleAnalog This struct describes an analog add-on module.

kvIoModuleRelay This struct represents a relay add-on module.

kvIoModuleInternal This struct represents an internal module.

Use sizeof (2.32.3) to give the function the correct buflen value. Returns zero on
success or a negative error code on failure.

Syntax

int kvIoGetModulePins(int module, kvIoModuleDigital buffer, int
buflen)

int kvIoGetModulePins(int module, kvIoModuleAnalog buffer, int
buflen)

int kvIoGetModulePins(int module, kvIoModuleRelay buffer, int
buflen)

int kvIoGetModulePins(int module, kvIoModuleInternal buffer,
int buflen)

2.31.14 kvIoSetModulePins

This function is used to set all the pins on one module in a single call. The supplied
buffer should be one of the following structs: Note that the input Pins are ignored.

kvIoModuleDigital This struct describes a digital add-on module.

kvIoModuleAnalog This struct describes an analog add-on module.

kvIoModuleRelay This struct represents a relay add-on module.

kvIoModuleInternal This struct represents an internal module.

Use sizeof (2.32.3) to give the function the correct buflen value. Returns zero on
success or a negative error code on failure.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 79 (92)

Syntax

int kvIoSetModulePins(int module, kvIoModuleDigital buffer, int
buflen)

int kvIoSetModulePins(int module, kvIoModuleAnalog buffer, int
buflen)

int kvIoSetModulePins(int module, kvIoModuleRelay buffer, int
buflen)

int kvIoSetModulePins(int module, kvIoModuleInternal buffer,
int buflen)

2.32 Other Predefined Functions

2.32.1 timeGetDate

Provides time and date as a struct tm (see Section 2.34.5, tm, on Page 81), as
an integer, or as a string. The integer represents time in the standard Unix epoch
(i.e. the number of seconds since 00:00:00 UTC on 1 January 1970).

When there is no time input parameter, the current clock time is used.

If buf is too small, characters to the right will be discarded.

Syntax

void timeGetDate(tm t)
void timeGetDate(int &time)
void timeGetDate(char buf[])
void timeGetDate(int time, char buf[])

2.32.2 timeGetLocal

Accesses the time since the device was started (synchronized with the CAN
message timestamps). The optional remainder will contain the remainder of the
integer division of the timestamp by scale.

Returns the result of an integer division of the time since the device was started
(microseconds) by scale.

The function considers scale to be an unsigned integer. A scale value of 0 is a
special case interpreted as one larger than the maximum unsigned integer. This
will cause the function to return the high integer of the time value.

Syntax

int timeGetLocal(int scale)
int timeGetLocal(int scale, int &remainder)

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 80 (92)

2.32.3 sizeof

This is really a language/compiler feature rather than a function, and is mainly
useful for serialization and deserialization (see Section 2.3, Serialization and
Deserialization, on Page 20).

Only constant, variable and type names are allowed as “parameter”.

Returns the “packed” size in bytes, suitable for serialization/deserialization
(see Section 2.3, Serialization and Deserialization, on Page 20 for details), of the
specified type or variable.

Note: To get the number of elements in an array, use .count instead (see Sec-
tion 2.1.5, Arrays, on Page 16).

2.33 Predefined Symbols

2.33.1 this

The symbol this can be used inside a message handler to refer to the message
being handled.

Example

on CanMessage 123 {
printf("%d\n" this.id);

}

This handler would print ‘123’ to the standard output each time a CAN message
with identifier 123 arrived. Inside a CanMessage handler, this has the type
CanMessage.

2.34 Predefined Types

This section describes the data types that are predefined in the run-time library.

2.34.1 Timer

typedef struct {
int timeout; // Period time in milliseconds
int id; // User supplied id (for use when needed)

} Timer;

Defines a timer.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 81 (92)

2.34.2 CanMessage

typedef struct {
byte channel; // Channel received message arrived on
byte flags; // CAN message flags, for extended id etc
byte dlc; // Number of bytes (normally) in CAN message
int id; // CAN id of message
byte data[8]; // CAN message data

} CanMessage;

Defines a CAN message.

Note: The time stamp on an incoming message is not directly accessible.
canGetTimestamp() must be used to access the time stamp.

2.34.3 CanMessageFd

typedef struct {
byte channel; // Channel received message arrived on
byte dlc; // Number of bytes in CAN FD message
int flags; // CAN FD message flags
int id; // CAN id of message
byte data[64]; // CAN FD message data

} CanMessageFd;

Defines a CAN FD message.

Note: The time stamp on an incoming message is not directly accessible.
canGetTimestamp() must be used to access the time stamp.

2.34.4 CanTpMessage

typedef struct {
int id; // User supplied id (for use when needed)
int result; // Error code
byte data[]; // Received data

} CanTpMessage;

Defines the data received by a CanTp handler.

2.34.5 tm

typedef struct {
int tm_sec; // seconds after the minute
int tm_min; // minutes after the hour
int tm_hour; // hours since midnight
int tm_mday; // day of the month
int tm_mon; // months since January
int tm_year; // years since 1900

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 82 (92)

int tm_wday; // days since Sunday
int tm_yday; // days since January 1
int tm_isdst; // Daylight Saving Time flag

} tm;

Defines the time format.

2.34.6 ExceptionData

typedef struct {
int current_thread; // # of thread where exception

occurred
int error; // Exception number
int line; // Line (if accessible)
int pc; // Program counter
int cycle; // # of executed cycles
int locals; // Index to local variables on stack
int stack[]; // The stack
int globals[]; // The global variables
int stack_base; // Base address of the stack

} ExceptionData;

This built-in type defines an exception. When received in an on exception, the
data is const.

2.34.7 Types for Database Defined Signals

typedef struct {
int Raw;
int Phys;

};

typedef struct {
float Raw;
float Phys;

};

These two built-in types are used to define signals from database files. If your
message is defined in a database file, you can manipulate the message’s signals
by assigning values to their .Raw or .Phys components. Raw means the value
actually transmitted in the CAN messages. Phys means the physical value, scaled
according to the parameters defined for that signal in the database.

The scaling rules are:

Physical value = (raw value) * factor + offset Raw value =
((physical value) - offset) / factor

Suppose you have a database where the message EngineData contains the signal
EngineTemp with a range from −50 ◦C to 150 ◦C, the offset is specified as -50 and
the factor as 0.01, and the data format is an unsigned 16-bit integer.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 83 (92)

CanMessage_EngineData.EngineTemp.Phys = 75;

The assignment above means that a raw value of (75 - (- 50)) / 0.01 = 12500 would
be assigned to the two bytes that make up the EngineTemp in the CAN message
EngineData.

CanMessage_EngineData.EngineTemp.Raw = 75;

This assignment would just assign 75 to the two bytes that make up the
EngineTemp signal representing a temperature of 75*0.01 + (- 50) = −49.25 ◦C.

2.34.8 IoEvent

typedef struct {
int pin; // Pin that generated the event
int event; // Event type
float value; // Event value

} IoEvent;

Defines the data received by an IoEvent handler, see 2.35.19.5 for values for
event.

2.34.9 kvIoModuleDigital

typedef struct {
int type; // The type of module.
byte DO_0_7; // Digital Out
byte DO_8_15; // Digital Out
byte DI_0_7; // Digital In
byte DI_8_15; // Digital In

} kvIoModuleDigital;

This define is used in kvIoGetModulePins and kvIoSetModulePins. This
struct represents a digital add-on module. For type see Module type.

2.34.10 kvIoModuleAnalog

typedef struct {
int type; // The type of module.
float AO1; // Analog Out
float AO2; // Analog Out
float AO3; // Analog Out
float AO4; // Analog Out
float AI1; // Analog In
float AI2; // Analog In
float AI3; // Analog In
float AI4; // Analog In

} kvIoModuleAnalog;

This define is used in kvIoGetModulePins and kvIoSetModulePins. This
struct represents a analog add-on module. For type see Module type.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 84 (92)

2.34.11 kvIoModuleRelay

typedef struct {
int type; // The type of module.
byte RO_0_7; // Relay Out
byte DI_0_7; // Digital In

} kvIoModuleRelay;

This define is used in kvIoGetModulePins and kvIoSetModulePins. This
struct represents a relay add-on module. For type see Module type.

2.34.12 kvIoModuleInternal

typedef struct {
int type; // The type of module.
unsigned char DO : 1; // Digital Out
unsigned char DI : 1; // Digital In

} kvioModuleInternal;

This define is used in kvIoGetModulePins and kvIoSetModulePins. This
struct represents a internal module. For type see Module type.

2.35 Predefined Constants

2.35.1 Maths

M_PI 3.14159265359

M_E 2.71828182846

2.35.2 Timer Period Counts

FOREVER

ONCE

2.35.3 CAN Message Flags

canMSG_RTR Marks a Remote-Frame. Can also be used for
transmitting messages. Not available for
CAN FD messages.

canMSG_EXT For received messages, set if the CAN
message has an extended identifier. To send a
CAN message with a 29 bit identifier, this flag
must be set when calling canWrite().

canMSG_ERROR_FRAME Marks error frames.

canMSGERR_OVERRUN Marks that overrun occured. Is ignored on
outgoing messages.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 85 (92)

2.35.4 CAN FD Message Flags

canFDMSG_FDF Marks that a frame is a CAN FD frame.

canFDMSG_BRS Marks that the data phase of a CAN FD frame
is bitrate switched.

canFDMSG_SINGLE_SHOT Marks that a single attempt at sending
message should be made. No retransmissions
will be made upon failure.

2.35.5 CAN Bitrates

canBITRATE_1M 1 Mbit/s 75% sample point

canBITRATE_500K 500 kbit/s 75% sample point

canBITRATE_250K 250 kbit/s 75% sample point

canBITRATE_125K 125 kbit/s 75% sample point

canBITRATE_100K 100 kbit/s 75% sample point

canBITRATE_83K 83.333 kbit/s 75% sample point

canBITRATE_62K 62.5 kbit/s 75% sample point

canBITRATE_50K 50 kbit/s 75% sample point

2.35.6 CAN FD Bitrates

canFD_BITRATE_500K_80P 500 kbit/s 80% sample point

canFD_BITRATE_1M_80P 1 Mbit/s 80% sample point

canFD_BITRATE_2M_80P 2 Mbit/s 80% sample point

canFD_BITRATE_4M_80P 4 Mbit/s 80% sample point

canFD_BITRATE_8M_60P 8 Mbit/s 60% sample point

2.35.7 CAN Driver Modes

canDRIVER_NORMAL

canDRIVER_SILENT

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 86 (92)

2.35.8 CAN Communication Modes

canMODE_CAN The channel will only be able to send and
recieve classic CAN messages.

canMODE_CAN_FD The channel will use the CAN FD protocol.
This also means that messages with CAN FD
message flags can now be used,
see Section 2.35.4 CAN FD Message Flags.

canMODE_CAN_FD_NONISO The channel will use the CAN FD NON-ISO
protocol. This also means that messages with
CAN FD message flags can now be used,
see Section 2.35.4 CAN FD Message Flags.

2.35.9 CAN Status

canSTAT_BUS_OFF

canSTAT_ERROR_PASSIVE

canSTAT_ERROR_WARNING

canSTAT_ERROR_ACTIVE

2.35.10 CAN Transport Protocols

2.35.10.1 Error Codes

canTp_OK No error detected.

canTp_TX_ERR_MASK Covers all transmit errors.

canTp_RX_ERR_MASK Covers all receive errors.

canTp_GEN_ERR_MASK Covers all generic errors.

iso15765_OK No error detected.

iso15765_TIMEOUT_A

iso15765_TIMEOUT_Bs

iso15765_TIMEOUT_Cr

iso15765_WRONG_SN

iso15765_INVALID_FS

iso15765_UNEXP_PDU

iso15765_WFT_OVRN

iso15765_BUFFER_OVFLW

2.35.10.2 Events

iso15765_TxConfirmation

iso15765_RxIndication

iso15765_FfIndication

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 87 (92)

2.35.10.3 Attributes

canTp_Id User supplied id (for use when needed).

iso15765_BS

iso15765_STmin

iso15765_TxTimeout

iso15765_RxTimeout

iso15765_WFTmax

iso15765_Mask

iso15765_Code

iso15765_Channel

2.35.10.4 Address Modes

iso15765_11bit

iso15765_29bit

iso15765_Physical

iso15765_Functional

iso15765_Normal

iso15765_Fixed

iso15765_Extended

iso15765_Mixed

iso15765_Local

iso15765_Remote

2.35.11 File Open

OPEN_READ

OPEN_WRITE

OPEN_APPEND

OPEN_TRUNCATE

2.35.12 File Seek

SEEK_CUR

SEEK_SET

SEEK_END

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 88 (92)

2.35.13 Logger Status

LOGGER_STATE_UNINITIALIZED This is returned when the logger mechanism
isn’t running.

LOGGER_STATE_IDLE This is returned when the device is in logger
mode, but not storing anything to the log file.
Usually seen when the device is waiting for a
trigger to happen.

LOGGER_STATE_STORING This is returned when the device is waiting for
a trigger and the pre-trigger is activated (i.e.
buffering the pre-trigger on the disk).

LOGGER_STATE_LOGGING This is returned when the device is logging
data.

LOGGER_STATE_DISK_FULL This is returned when the disk is full.

LOGGER_STATE_FAULT This is returned when the logger mechanisms
encounters an error that can’t be handle, like
the disk is removed.

LOGGER_STATE_UNKNOWN This should not happen.

2.35.14 Crypto

CRYPTO_MD5 MD5 hash

CRYPTO_SHA1 SHA-1 hash

CRYPTO_AES128 AES-128 cipher (padding: None, mode: ECB)

CRYPTO_MD5_SIZE Size of MD5 digest

CRYPTO_SHA1_SIZE Size of SHA-1 digest

CRYPTO_HASH_SIZE Maximum size of supported hashes

CRYPTO_AES128_BLOCK Data block granularity for AES-128

2.35.15 System

SYS_EAN_HIGH Vendor ID part of EAN (int)

SYS_EAN_LOW Product ID part of EAN (int)

SYS_SERIAL_NO Product serial number (int)

SYS_SD_CID SD card CID information

SYS_SD_CID_SIZE Size of SD card CID information

2.35.16 User Parameters

USER_PARAM_SIZE (not used) User parameter size number (int)

USER_PARAM (not used) User parameter (bytearray)

USER_PARAM_MAX_SIZE Max size of the user parameters

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 89 (92)

2.35.17 LED Constants

Different Kvaser Devices can have up to twelve LED indicators. Normally LED0
stands for PWR indicator, deviations are specified in respective device’s user
guide.

LED0 The first LED

LED1 The second LED

LED2 The third LED

LED3 The fourth LED

LED4 The fifth LED

LED5 The sixth LED

. . .

LED11 The twelfth LED

LED_STATE_ON Turn the LED on

LED_STATE_OFF Turn the LED off

2.35.18 Envvar Constants

ENVVAR_MAX_SIZE 4096

2.35.19 I/O Pin Constants

2.35.19.1 Module type

kvIO_MODULE_TYPE_DIGITAL Module with digital pins

kvIO_MODULE_TYPE_ANALOG Module with analog pins

kvIO_MODULE_TYPE_RELAY Module with relay and digital pins

kvIO_MODULE_TYPE_INTERNAL Built-in module with digital pins

2.35.19.2 Pin type

kvIO_PIN_TYPE_DIGITAL Digital pin

kvIO_PIN_TYPE_ANALOG Analog pin

kvIO_PIN_TYPE_RELAY Relay pin

2.35.19.3 Direction

kvIO_PIN_DIRECTION_IN Input pin

kvIO_PIN_DIRECTION_OUT Output pin

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 90 (92)

2.35.19.4 Properties

The following macros can be used with kvIoPinGetInfo (2.31.3) to get the
value of each property. The value range for each property is specified in the
manufacturer’s user manual.

kvIO_INFO_GET_MODULE_TYPE The type of I/O module that the pin belongs to.
Integer. Read-only. See ch. 2.35.19.1 for
definitions

kvIO_INFO_GET_MODULE_NUMBER The number that represents the add-on
module the pin belongs to, starting from 0.
Read-only.

kvIO_INFO_GET_SERIAL_NUMBER The serial number of the add-on module the
pin belongs to. Read-only.

kvIO_INFO_GET_FW_VERSION The number that represents the software of
the module the pin belongs to. Read-only.

kvIO_INFO_GET_DIRECTION Pin direction. Integer. Read-only. See ch.
2.35.19.3 for definitions

kvIO_INFO_GET_PIN_TYPE Pin type. Integer. Read-only. See ch.
2.35.19.2 for definitions.

kvIO_INFO_GET_NUMBER_OF_BITS Resolution in number of bits. Integer.
Read-only.

kvIO_INFO_GET_RANGE_MIN Lower range limit in volts. Float. Read-only.
N/A for relay pins.

kvIO_INFO_GET_RANGE_MAX Upper range limit in volts. Float. Read-only.
N/A for relay pins.

kvIO_INFO_GET_DI_LOW_HIGH_FILTER Filter time in micro seconds when a digital
input pin goes from LOW to HIGH. Integer.

kvIO_INFO_GET_DI_HIGH_LOW_FILTER Filter time in micro seconds when a digital
input pin goes from HIGH to LOW. Integer.

kvIO_INFO_GET_AI_LP_FILTER_ORDER The low-pass filter order for an analog input
pin. Integer.

kvIO_INFO_GET_AI_HYSTERESIS The hysteresis in volt for an analog input pin,
i.e. the amount the input have to change
before the sampled value is updated. Float.

Some properties are user configurable. The following macros can be used with
kvIoPinSetInfo (2.31.3) to set the value of these properties. The value range
for each property is specified in the manufacturer’s user manual.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 91 (92)

kvIO_INFO_SET_DI_LOW_HIGH_FILTER Filter time in micro seconds when a digital
input pin goes from LOW to HIGH. Integer.

kvIO_INFO_SET_DI_HIGH_LOW_FILTER Filter time in micro seconds when a digital
input pin goes from HIGH to LOW. Integer.

kvIO_INFO_SET_AI_LP_FILTER_ORDER The low-pass filter order for an analog input
pin. Integer.

kvIO_INFO_SET_AI_HYSTERESIS The hysteresis in volt for an analog input pin,
i.e. the amount the input have to change
before the sampled value is updated. Float.

2.35.19.5 Event Codes

kvIO_EVENT_CONFIG_CHANGED The I/O configuration has changed.

kvIO_EVENT_VALUE_ABOVE Analog input value above upper limit.

kvIO_EVENT_VALUE_BELOW Analog input value below lower limit.

kvIO_EVENT_VALUE_CHANGED Analog input value change exceeds hysteresis.

kvIO_EVENT_RISING_EDGE Digital input went from LOW to HIGH.

kvIO_EVENT_FALLING_EDGE Digital input went from HIGH to LOW.

References

[1] F. Panneton, P. L’Ecuyer, and M. Matsumoto, Improved Long-Period
Generators Based on Linear Recurrences Modulo 2 ACM Transactions on
Mathematical Software, 32, 1 (2006), 1-16

Kvaser AB, Mölndal, Sweden — www.kvaser.com

The Kvaser t Programming Language 92 (92)

3 Document Revision History

Version history for document UG_98032_kvaser_t_userguide:

Revision Date Changes
- 2011-09-19 Initial version
3.0- 2012-01-30-
-4.5 2016-07-08 (Earlier entries removed.)
4.6 2017-02-03 Updated timer descriptions (according to changes in

VM).
4.7 2017-04-19 The XML-parser now handles comments and prolog.

Requires updated firmware. Padding and mode
information added to CRYPTO_AES128.

4.8 2017-08-14 Increased compiler version to 3.6, requires updated
firmware. Added parameter descriptions to
canGetBusParams and canGetBusParamsFd. Added
function loggerSetPretrigger. Renamed flag
canMSG_SINGLE_SHOT to
canFDMSG_SINGLE_SHOT.

4.9 2018-01-30 Increased compiler version to 3.7, added #include <>
syntax to search system directory.

4.10 2018-05-04 Increased compiler version to 3.8. Minor buf fix.
4.11 2018-06-14 Noted that only one cantp instance are allowed per

slot.
4.12 2018-09-11 Increased compiler version to 3.9, added support for

I/O.
4.13 2018-10-04 IoEvents are checked when calling

kvIoConfirmConfig() and not on script start.
4.14 2019-02-04 Increased compiler version to 3.10, updated support

for I/O.
4.15 2019-08-09 Url protocol updated
4.16 2019-09-20 Increased compiler version to 3.11, added

kvIO_MODULE_TYPE_INTERNAL.
4.17 2021-01-07 Increased compiler version to 3.12, added constant

canFD_BITRATE_500K_80P and support for J1939
databases. Added a note about receiving CAN
messages after calling canBusOff. Replaced Kvaser
Eagle with Kvaser Memorator Pro 2xHS v2. Updated
CAN FD sample to use canFD_BITRATE_XXX.

Kvaser AB, Mölndal, Sweden — www.kvaser.com

	t Programming
	Overview
	Introduction to the t Language for CAN
	Elements of a t Program
	Device dependent functionality

	t Language Reference
	Types
	Variables and constants
	Serialization and Deserialization
	Environment Variables
	Functions
	Control Flow Statements
	Expressions
	Blocks
	Comments
	Hooks
	Using CAN Databases
	#include
	#error
	#warning
	Conditional Compilation
	Predefined Output Functions
	Predefined File I/O Functions
	Predefined XML Functions
	Predefined Math Functions
	Predefined String Functions
	Predefined CAN Related Functions
	Predefined Timer Related Functions
	Predefined Environment Variable Functions
	Predefined CAN Transport Protocol Related Functions
	Predefined t Program Related Functions
	Predefined Logger Related Functions
	Predefined Crypto Related Functions
	Predefined System Related Functions
	Predefined Customer Data Related Functions
	Predefined LED Functions
	Predefined I/O Functions
	Other Predefined Functions
	Predefined Symbols
	Predefined Types
	Predefined Constants

	Document Revision History

